Abstract
This paper introduces a topological map dedicated to an automatic classification categorical data. Usually, topological maps uses a numerical (or binary) coding of the categorical data during the learning process. In the present paper, we propose a probabilistic formalism where the neurons now represent probability tables. Two examples using actual and synthetic data allow to validate the approach. The results show the good quality of the topological order obtained as well as its performances in classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anouar, F. Badran, F. Thiria, S. Probabilistic self-organizing map and radial basis function networks. Neurocomputing 20, 83–96. (1998)
Dempster, A. P. Laird, N. M. Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of royal Statistic Society, Series B, 39, 1–38
Lebbah, M. Badran, F. Thiria, S. Topological Map for Binary Data, ESANN 2000, Bruges, April 26–27-28, 2000, Proceedings
Leich, F. Weingessel, A. Dimitriadou, E. Competitive Learning for Binary Data. Proc of ICANN’98, septembre 2–4. Springer Verlag. (1998)
Luttrel S. P, 1994. A Bayesian Analysis of Self-Organizing Maps, Neural Computing vol 6
Kohonen, T. Self-Organizing Map. Springer, Berlin.(1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lebbah, M., Chabanon, C., Badran, F., Thiria, S. (2002). Categorical Topological Map. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_144
Download citation
DOI: https://doi.org/10.1007/3-540-46084-5_144
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44074-1
Online ISBN: 978-3-540-46084-8
eBook Packages: Springer Book Archive