Nothing Special   »   [go: up one dir, main page]

Skip to main content

Categorical Topological Map

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2002 (ICANN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2415))

Included in the following conference series:

Abstract

This paper introduces a topological map dedicated to an automatic classification categorical data. Usually, topological maps uses a numerical (or binary) coding of the categorical data during the learning process. In the present paper, we propose a probabilistic formalism where the neurons now represent probability tables. Two examples using actual and synthetic data allow to validate the approach. The results show the good quality of the topological order obtained as well as its performances in classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anouar, F. Badran, F. Thiria, S. Probabilistic self-organizing map and radial basis function networks. Neurocomputing 20, 83–96. (1998)

    Article  MATH  Google Scholar 

  2. Dempster, A. P. Laird, N. M. Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of royal Statistic Society, Series B, 39, 1–38

    Google Scholar 

  3. Lebbah, M. Badran, F. Thiria, S. Topological Map for Binary Data, ESANN 2000, Bruges, April 26–27-28, 2000, Proceedings

    Google Scholar 

  4. Leich, F. Weingessel, A. Dimitriadou, E. Competitive Learning for Binary Data. Proc of ICANN’98, septembre 2–4. Springer Verlag. (1998)

    Google Scholar 

  5. Luttrel S. P, 1994. A Bayesian Analysis of Self-Organizing Maps, Neural Computing vol 6

    Google Scholar 

  6. Kohonen, T. Self-Organizing Map. Springer, Berlin.(1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lebbah, M., Chabanon, C., Badran, F., Thiria, S. (2002). Categorical Topological Map. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_144

Download citation

  • DOI: https://doi.org/10.1007/3-540-46084-5_144

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44074-1

  • Online ISBN: 978-3-540-46084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics