Nothing Special   »   [go: up one dir, main page]

Skip to main content

Motion Planning for Car-Like Robots Using Lazy Probabilistic Roadmap Method

  • Conference paper
  • First Online:
MICAI 2002: Advances in Artificial Intelligence (MICAI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2313))

Included in the following conference series:

Abstract

In this paper we describe an approach to probabilistic roadmap method. Our algorithm builds initially a roadmap in the configuration space considering that all nodes and edges are collision-free, and searches the roadmap for the shortest path between start and goal nodes. If a collision with the obstacles occurs, the corresponding nodes and edges are removed from the roadmap or the planner updates the roadmap with new nodes and edges, and then searches for a shortest path. The procedure is repeated until a collision-free path is found. The goal of our approach is to minimize the number of collision checks and calls to the local method. Experimental results presented in this paper show that our approach is very efficient in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Overmars, M. H.: A random approach to motion planning. Technical Report RUU-CS-92-32, Utrecht University (1992)

    Google Scholar 

  2. Overmars, M. H., Švestka, P.: A probabilistic learning approach to motion planning. Workshop on the Algorithmic Foundations of Robotics. A. K. Peters (1994) 19–37

    Google Scholar 

  3. Kavraki, L. E., Švestka, P., Latombe, J-C., Overmars, M. H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation. Vol 12, No. 4 (1996) 566–579

    Article  Google Scholar 

  4. Švestka, P., Overmars, M. H.: Motion planning for car-like robots using a probabilistic learning approach. The International Journal of Robotics Research. Vol 16, No. 2 (1997) 119–143

    Article  Google Scholar 

  5. Nissoux, C., Siméon, T., Laumond, J. P.: Visibility based probabilistic roadmaps. IEEE International Conference on Intelligent Robots and Systems (1999)

    Google Scholar 

  6. Kuffner, J. J., LaValle, S. M.: RRT-Connect: An efficient approach to singlequery path planning. IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  7. Vallejo, D., Jones, C., Amato, N. M.: An adaptive framework for’ single-shot’ motion planning. Technical Report 99-024. Texas A&M University (1999)

    Google Scholar 

  8. Bohlin, R., Kavraki, L. E.: Path planning using lazy PRM. IEEE International Conference on Robotics and Automation (2000) 521–528

    Google Scholar 

  9. Sánchez, A. G., Latombe, J-C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. Int. Symposium on Robotics Research (ISRR’01) (2001)

    Google Scholar 

  10. Laumond, J-P Ed.: Robot motion planning and control. Springer Verlag (1988)

    Google Scholar 

  11. Reeds, J. A., Shepp, R. A.: Optimal paths for a car that goes both forward and backwards. Pacific Journal of Mathematics. 145(2) (1990) 367–393

    MathSciNet  Google Scholar 

  12. Sánchez, L. A., Arenas, B. J. A., Zapata, R.: Optimizing trajectories in nonholonomic motion planning. In 3er Encuentro Internacional de Ciencias de la Computación. INEGI (2001) 479–488

    Google Scholar 

  13. Vendittelli, M., Laumond, J. P., Nissoux, C.: Obstacle distance for car-like robots. IEEE Transactions on Robotics and Automation. Vol 15, No. 4 (1999) 678–691

    Article  Google Scholar 

  14. Souères, P., Boissonnat, J-D.: Optimal trajectories for non-holonomic robots. In Robot motion planning and control, J. P. Laumond Ed. Vol 229, Springer Verlag (1998)

    Google Scholar 

  15. Desaulniers, G.: On shortest paths for a car-like robot maneuvering around obstacles. Robotics and Autonomous Systems. Vol 17 (1996) 139–148

    Article  Google Scholar 

  16. Reif, J., Wang, H.: The complexity of the two dimensional curvature-constrained shortest-path problem. Robotics: The algorithmic perspective. P. K. Agarwal et al. Eds, A. K. Peters (1998)

    Google Scholar 

  17. Agarwal, P. K., Raghavan, P., Tamaki, H.: Motion planning for a steering-constrained robot through moderate obstacles. In ACM Symp. on Computational Geometry (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez L., A., Zapata, R., Arenas B., J.A. (2002). Motion Planning for Car-Like Robots Using Lazy Probabilistic Roadmap Method. In: Coello Coello, C.A., de Albornoz, A., Sucar, L.E., Battistutti, O.C. (eds) MICAI 2002: Advances in Artificial Intelligence. MICAI 2002. Lecture Notes in Computer Science(), vol 2313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46016-0_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46016-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43475-7

  • Online ISBN: 978-3-540-46016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics