Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lower Bounds for Group Covering Designs

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1999)

Abstract

A group covering design (GCD) is a set of mn points in n disjoint groups of size m and a collection of b k-subsets, called blocks, such that every pairset not contained in the same group occurs in at least one block. For m = 1, a GCD is a covering design [5]. Particular cases of GCD’s, namely transversal covers, covering arrays, Sperner systems etc. have been extensively studied by Poljak and Tuza [22], Sloane [24], Stevens et al. [26] and others. Cohen et al. [8], [9] and Sloane [24] have also shown applications of these designs to software testing, switching networks etc.. Determining the group covering number, the minimum value of b, for given k,m and n, in general is a hard combinatorial problem. This paper determines a lower bound for b, analogous to Schönheim lower bound for covering designs [23]. It is shown that there exist two classes of GCD’s (Theorems 15 and 18) which meet these bound. Moreover, a construction of a minimum GCD from a covering design meeting the Schönheim lower bound is given. The lower bound is further improved by one for three different classes of GCD’s. In addition, construction of group divisible designs with consecutive block sizes (Theorems 20 and 21) using properties of GCD’s are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. M. Assaf, An application of modified group divisible designs, J. Combin. Theory Ser. A 68 (1994), 152–168.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. C. Bhandari, K. K. P. Chanduka and A. K. Lal, On lower bounds for covering codes, Designs, Codes and Cryptography, 15 (1998), 237–243.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block size four, Discrete Math. 20 (1977), 1–10.

    Article  MathSciNet  Google Scholar 

  4. Y. Caro and Y. Raphael, Covering graphs: The covering problem solved, J. Comb. Theory, Ser. A, 83 (1998), 273–282.

    Article  MATH  Google Scholar 

  5. K. K. P. Chanduka, “Combinatorial Designs and Covering Codes”, Ph.D. thesis, Indian Institute of Technology, Kanpur, India (January 1998).

    Google Scholar 

  6. K. K. P. Chanduka, M. C. Bhandari and A. K. Lal, Further results on q-ary covering codes, manuscript under preparation.

    Google Scholar 

  7. W. Chen and I. S. Honkala, Lower bounds for q-ary covering codes, IEEE Trans. Inform. Theory 36 (1990), 664–671.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. M. Cohen, S. R. Dalal, J. Parelius and G. C. Patton, The combinatorial design approach to automatic test generation, IEEE software, 13 (1996), 83–88.

    Article  Google Scholar 

  9. D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton, The AETG systems: An approach to testing based on combinatorial design, IEEE Trans. Soft. Eng., 23 (1997), 437–444.

    Article  Google Scholar 

  10. C. J. Colbourn and J. H. Dinitz, editors, “The CRC Handbook of Combinatorial Designs”, CRC Press, Boca Raton, first edition, 1996.

    Google Scholar 

  11. C. J. Colbourn and A. C. H. Ling, Pairwise balanced designs with block sizes 8, 9 and 10, J. Combin. Theory Ser. A 77 (1997), 228–245.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. J. Colbourn, A. Rosa and D. R. Stinson, Pairwise balanced designs with block sizes three and four, Can. J. Math. 43 (1991), 673–704.

    MATH  MathSciNet  Google Scholar 

  13. M. K. Fort and G. A. Hedlund, Minimal covering of pairs by triples, Pacific J. Math. 8 (1958), 709–719.

    MATH  MathSciNet  Google Scholar 

  14. H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255–369.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. S. Honkala, Modified bounds for covering codes, IEEE Trans. Inform. Theory 37 (1991), 351–365.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. J. Kleitman and J. Spencer, Families of K-independent sets, Discrete Math. 6 (1973), 255–262.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Lenz, Some remarks on Pairwise balanced designs, Mitt. Math. Sem. Giessen, 165 (1984), 49–62.

    MathSciNet  Google Scholar 

  18. A. C. H. Ling, X. Zhu, C. J. Colbourn and R. C. Mullin, Pairwise balanced designs with consecutive block sizes, Designs, Codes and Cryptography, 10 (1997), 203–222.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. H. Mills, On the covering of pairs by quadruples I, J. Combin. Theory Ser. A 13 (1972), 55–78.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. H. Mills, On the covering of pairs by quadruple II, J. Combin. Theory Ser. A 15 (1973), 138–166.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. H. Mills and R. C. Mullin, Covering pairs by quintuples: The case v congruent to 3 (mod 4), J. Combin. Theory Ser. A 49 (1988), 308–322.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Poljak and Z. Tuza, On the maximum number of qualitatively independent partitions, J. Combin. Theory Ser. A 51 (1989), 111–116.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Schönheim, On coverings, Pacific J. Math. 14 (1964), 1405–1411.

    MATH  MathSciNet  Google Scholar 

  24. N. J. A. Sloane, Covering arrays and intersecting codes, J. Combin. Designs, 1 (1993), 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Stevens and E. Mendelsohn, New recursive methods for transversal covers, preprint.

    Google Scholar 

  26. B. Stevens, L. Moura and E. Mendelsohn, Lower bounds for transversal covers, Designs, Codes and Cryptography, 15 (1998), 279–299.

    Article  MathSciNet  Google Scholar 

  27. G. Tarry, Le problème des 36 officiers, Compt. Rend. Assoc. Fr. Av. Sci. 1 (1900), 122–123; 2 (1901), 170-203.

    Google Scholar 

  28. Z. Zhang, Linear inequalities for covering codes: Part I-Pair covering inequalities, IEEE Trans. Inform. Theory 37 (1991), 573–582.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chanduka, K.K.P., Bhandari, M.C., Lal, A.K. (1999). Lower Bounds for Group Covering Designs. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46796-3_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-46796-3_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66723-0

  • Online ISBN: 978-3-540-46796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics