Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Many Faces of Block Codes

  • Conference paper
  • First Online:
STACS 2000 (STACS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Included in the following conference series:

  • 865 Accesses

Abstract

Block codes are first viewed as finite state automata represented as trellises. A technique termed subtrellis overlaying is introduced with the object of reducing decoder complexity. Necessary and sufficient conditions for subtrellis overlaying are next derived from the representation of the block code as a group, partitioned into a subgroup and its cosets. Finally a view of the code as a graph permits a combination of two shortest path algorithms to facilitate efficient decoding on an overlayed trellis.

Presently at Nokia Research Center, Helsinki, Finland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inform. Theory 20(2), March 1974, pp 284–287.

    Article  MATH  MathSciNet  Google Scholar 

  2. A.R. Calderbank, G. David Forney, Jr., and Alexander Vardy, Minimal Tail-Biting Trellises: The Golay Code and More, IEEE Trans. Inform. Theory 45(5) July 1999, pp 1435–1455.

    Article  MATH  MathSciNet  Google Scholar 

  3. G.D. Forney, Jr., Coset codes II: Binary lattices and related codes, IEEE Trans. Inform. Theory 36(5), Sept. 1988, pp 1152–1187.

    Article  MathSciNet  Google Scholar 

  4. G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes:State spaces, trellis diagrams and canonical encoders, IEEE Trans. Inform. Theory 39(5) Sept 1993, pp 1491–1513.

    Article  MATH  MathSciNet  Google Scholar 

  5. Y.S. Han, C.R.P. Hartmann, and C.C. Chen, Efficient Priority-First Search Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes, IEEE Trans. Inform. Theory 39(5), Sept. 1993, pp 714–729.

    Article  MathSciNet  Google Scholar 

  6. P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Solid-State Circuits SSC-4, 1968, pp 100–107.

    Google Scholar 

  7. F.R. Kschischang and V. Sorokine, On the trellis structure of block codes, IEEE Trans. Inform Theory 41(6), Nov 1995, pp 1924–1937.

    Article  MATH  MathSciNet  Google Scholar 

  8. F.R. Kschischang, The trellis structure of maximal fixed cost codes, IEEE Trans. Inform Theory 42(6), Nov. 1996, pp 1828–1837.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Lind and M. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.

    Google Scholar 

  10. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1981.

    Google Scholar 

  11. J.L. Massey, Foundations and methods of channel encoding, in Proc. Int. Conf. on Information Theory and Systems 65(Berlin, Germany) Sept 1978.

    Google Scholar 

  12. R.J. McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform Theory 42, 1996, pp 1072–1092

    Article  MATH  MathSciNet  Google Scholar 

  13. D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform Theory 34(5), Sept 1988, pp 1049–1053.

    Article  MathSciNet  Google Scholar 

  14. Amitava Dasgupta, Priti Shankar, Kaustubh Deshmukh, and B.S. Rajan, On Viewing Block Codes as Finite Automata, Technical Report IISc-CSA-1999-7, Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India, November, 1999.

    Google Scholar 

  15. A. Vardy, Trellis structure of codes, in Handbook of Coding Theory, R.A. Brualdi, W.C. Huffman, V.S. Pless, Eds., Vol.2, Chap. 24, Elsevier, 1998.

    Google Scholar 

  16. A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inform Theory 13, April 1967, pp 260–269.

    Article  MATH  Google Scholar 

  17. N. Wiberg, H.-A. Loeliger and R. Kotter, Codes and iterative decoding on general graphs, Euro. Trans. Telecommun.,6 pp 513–526, Sept 1995.

    Article  Google Scholar 

  18. J.C. Willems, Models for Dynamics, in Dynamics Reported, 2, U. Kirchgraber and H.O. Walther, Eds. New York: Wiley, 1989, pp 171–269.

    Google Scholar 

  19. J.K. Wolf, Efficient maximum-likelihood decoding of linear block codes using a trellis, IEEE Trans. Inform Theory 24(1), January 1978, pp 76–80.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deshmukh, K., Shankar, P., Dasgupta, A., Rajan, B.S. (2000). On the Many Faces of Block Codes. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics