Abstract
Block codes are first viewed as finite state automata represented as trellises. A technique termed subtrellis overlaying is introduced with the object of reducing decoder complexity. Necessary and sufficient conditions for subtrellis overlaying are next derived from the representation of the block code as a group, partitioned into a subgroup and its cosets. Finally a view of the code as a graph permits a combination of two shortest path algorithms to facilitate efficient decoding on an overlayed trellis.
Presently at Nokia Research Center, Helsinki, Finland
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inform. Theory 20(2), March 1974, pp 284–287.
A.R. Calderbank, G. David Forney, Jr., and Alexander Vardy, Minimal Tail-Biting Trellises: The Golay Code and More, IEEE Trans. Inform. Theory 45(5) July 1999, pp 1435–1455.
G.D. Forney, Jr., Coset codes II: Binary lattices and related codes, IEEE Trans. Inform. Theory 36(5), Sept. 1988, pp 1152–1187.
G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes:State spaces, trellis diagrams and canonical encoders, IEEE Trans. Inform. Theory 39(5) Sept 1993, pp 1491–1513.
Y.S. Han, C.R.P. Hartmann, and C.C. Chen, Efficient Priority-First Search Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes, IEEE Trans. Inform. Theory 39(5), Sept. 1993, pp 714–729.
P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Solid-State Circuits SSC-4, 1968, pp 100–107.
F.R. Kschischang and V. Sorokine, On the trellis structure of block codes, IEEE Trans. Inform Theory 41(6), Nov 1995, pp 1924–1937.
F.R. Kschischang, The trellis structure of maximal fixed cost codes, IEEE Trans. Inform Theory 42(6), Nov. 1996, pp 1828–1837.
D. Lind and M. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1981.
J.L. Massey, Foundations and methods of channel encoding, in Proc. Int. Conf. on Information Theory and Systems 65(Berlin, Germany) Sept 1978.
R.J. McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform Theory 42, 1996, pp 1072–1092
D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform Theory 34(5), Sept 1988, pp 1049–1053.
Amitava Dasgupta, Priti Shankar, Kaustubh Deshmukh, and B.S. Rajan, On Viewing Block Codes as Finite Automata, Technical Report IISc-CSA-1999-7, Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India, November, 1999.
A. Vardy, Trellis structure of codes, in Handbook of Coding Theory, R.A. Brualdi, W.C. Huffman, V.S. Pless, Eds., Vol.2, Chap. 24, Elsevier, 1998.
A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inform Theory 13, April 1967, pp 260–269.
N. Wiberg, H.-A. Loeliger and R. Kotter, Codes and iterative decoding on general graphs, Euro. Trans. Telecommun.,6 pp 513–526, Sept 1995.
J.C. Willems, Models for Dynamics, in Dynamics Reported, 2, U. Kirchgraber and H.O. Walther, Eds. New York: Wiley, 1989, pp 171–269.
J.K. Wolf, Efficient maximum-likelihood decoding of linear block codes using a trellis, IEEE Trans. Inform Theory 24(1), January 1978, pp 76–80.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Deshmukh, K., Shankar, P., Dasgupta, A., Rajan, B.S. (2000). On the Many Faces of Block Codes. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_4
Download citation
DOI: https://doi.org/10.1007/3-540-46541-3_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67141-1
Online ISBN: 978-3-540-46541-6
eBook Packages: Springer Book Archive