Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolutionary Computation Visualization: Application to G-PROP

  • Conference paper
Parallel Problem Solving from Nature PPSN VI (PPSN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Included in the following conference series:

Abstract

Software visualization is an area of computer science devoted to supporting the understanding and effective use of algorithms. The application of software visualization to Evolutionary Computation has been receiving increasing attention during the last few years. In this paper we apply visualization technique to an evolutionary algorithm for multilayer perceptron training. Our goal is to better understand its internal behavior in order to improve the evolutionary part of the method. As a result of applying this this technique several deficiencies in the method have been discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T.F. Cox and M.A.A. Cox. Multidimensional Scaling. London: Chapman & Hall, 1994.

    MATH  Google Scholar 

  2. B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge, GB: Cambridge University Press, 1996.

    MATH  Google Scholar 

  3. J.W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, pages 401–409, 1969.

    Google Scholar 

  4. Matlab-User Guide. Natick, Mass: The Mathworks, Inc, 1994–1996.

    Google Scholar 

  5. M. Riedmiller and H. Braun. A direct adapatative method for faster backpropa-gation learning: The RPROP algorithm. In H. Ruspini, editor, Proceedings of the IEEE International Conference on Neural Networks (ICNN), pages 586–591, 1993.

    Google Scholar 

  6. T. Kohonen. The Self-Organizing Map. In Proceedings of the IEEE, volume 78, pages 1464–1480, 1990.

    Article  Google Scholar 

  7. S.E. Fahlman. Faster-Learning Variations on Back-Propagation: An Empirical Study. Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, 1988.

    Google Scholar 

  8. P.A. Castillo; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Submitted to Neurocomputing (2nd revision), 1999.

    Google Scholar 

  9. P.A. Castillo; J. González; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. SA-Prop: Optimization of Multilayer Perceptron Parameters using Simulated Annealing. In Lecture Notes in Computer Science, Volume I, volume 1606, pp. 661–670, 1998.

    Google Scholar 

  10. P.A. Castillo; J. González; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop-II: Global Optimization of Multilayer Perceptrons using GAs. In Congress on Evolutionary Computation, Volume III, pp. 2022–2027, Washington D.C., USA, 1999.

    Google Scholar 

  11. P.A. Castillo; J. González; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop-III: Global Optimization of Multilayer Perceptrons using an Evolutionary Algorithm. In Congress on Evolutionary Computation, In Genetic and Evolutionary Computation Conference, Volume I, pp. 942, Orlando, USA, 1999.

    Google Scholar 

  12. P.A. Castillo; J. Carpio; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. Evolving Multilayer Perceptrons. To appear in Neural Proccesing Letters, vol. 12, issue 2. October 2000, 1999.

    Google Scholar 

  13. P.A. Castillo; M.G. Arenas; J.G. Castellano; J. Carpio; J.J. Merelo; A. Prieto; V. Rivas; G. Romero. Function approximation with evolved multilayer perceptrons. Submitted to PPSN2000.

    Google Scholar 

  14. O. L. Mangasarian; R. Setiono and W.H. Wolberg. Pattern recognition via linear programming: Theory and application to medical diagnosis. Large-scale numerical optimization, Thomas F. Coleman and Yuying Li, editors, SIAM Publications, Philadelphia 1990, pp 22–30, 1990.

    Google Scholar 

  15. Lutz Prechelt. PROBEN1 — A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994.

    Google Scholar 

  16. C. San Martin; C. Grass; J.M. Carazo. Six molecules of SV40 large t antigen assemble in a propeller-shaped particle around a channel. Journal of Molecular Biology, page in press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero, G. et al. (2000). Evolutionary Computation Visualization: Application to G-PROP. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_88

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics