Abstract
In this paper we propose to use invariant signatures of polygonal approximations of smooth curves for projective object recognition. The proposed algorithm is not sensitive to the curve sampling scheme or density, due to a novel re-sampling scheme for arbitrary polygonal approximations of smooth curves. The proposed re-sampling provides for weak-affine invariant parameterization and signature. Curve templates characterized by a scale space of these weak-affine invariant signatures together with a metric based on a modified Dynamic Programming algorithm can accommodate projective invariant object recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. M. Bruckstein, R. J. Holt, A. N. Netravali, and T. J. Richardson, “Invariant Signatures for Planar Shapes Under Partial Occlusion”, CVGIP: Image Understanding, Vol. 58, pp. 49–65, 1993.
A. M. Bruckstein, N. Katzir, M. Lindenbaum, and M. Porat, “Similarity Invariant Signatures and Partially Occluded Planar Shapes”, Int. J. Computer Vision, Vol. 7, pp. 271–285, 1992.
A. M. Bruckstein, and A. N. Netravali, “On Differential Invariants of Planar Curves and the Recognition of Partly Occluded Planar Shapes”, AT&T Technical memo, July 1990; also in Proc. of the Int. Workshop on Visual Form, Capri, May 1992.
A. M. Bruckstein, E. Rivlin, and I. Weiss, “Scale Space Local Invariants”, CIS Report No. 9503, Computer Science Department, Technion, Haifa, Israel, February 1995
A. M. Bruckstein, and D. Shaked, “Skew Symmetry Detection via Signature Functions”, Pattern Recognition, Vol. 31, pp. 181–192, 1998.
E. Calabi, P. J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker, “Differential and Numerically Invariant Signature Curves Applied to Object Recognition”, Int. J. Computer Vision, Vol. 26, pp. 107–135, 1998.
E. Calabi, P. J. Olver, and A. Tannenbaum, “Affine Geometry, Curve Flows, and Invariant Numerical Approximations”, Adv. in Math, Vol. 124, pp. 154–196, 1996.
D. Cyganski, J.A. Orr, T.A. Cott, and R.J. Dodson, “An Affine Transform Invariant Curvature Function”, Proceedings of the First ICCV, London, pp. 496–500, 1987.
T. Glauser and H. Bunke, “Edge Length Ratios: An Affine Invariant Shape Representation for Recognition with Occlusions”, Proc. of the 11th ICPR, Hague, 1992.
P. S. Heckbert, “Color Image Quantization for Frame Buffer Display”, http://www-cgi.cs.cmu.edu/asf/cs.cmu.edu/users/ph/www/ciq_thesis
R. J. Holt, and A. N. Netravali, “Using Affine Invariants on Perspective Projections of Plane Curves”, Computer Vision and Image Understanding, Vol. 61, pp. 112–121, 1995.
T. Moons, E. J. Pauwels, L. Van Gool, and A. Oosterlinck, “Foundations of Semi Differential Invariants”, Int. J. of Computer Vision, Vol. 14, 25–47, 1995.
E. J. Pauwels, T. Moons, L. Van Gool, and A. Oosterlinck, “Recognition of Planar shapes Under Affine Distortion”, Int. J. of Computer Vision, Vol. 14, 49–65, 1995.
L. R. Rabiner, and B. H. Juang, “Introduction to Hidden Markov Models”, IEEE ASSP Magazine, pp. 4–16, 1986.
L. R. Rabiner, and S. E. Levinson, Isolated and Connected Word Recognition-Theory and Selected Applications”, IEEE COM, Vol. 29, pp. 621–659, 1981.
L. R. Rabiner, A. E. Rosenberg, and S. E. Levinson, “Considerations in Dynamic Time warping Algorithms for Discrete Word Recognition”, IEEE ASSP, Vol. 26, pp. 575–582, 1978.
L. Van Gool, T. Moons, D. Ungureanu, and A. Oosterlinck, “The Characterization and Detection of Skewed Symmetry” CVIU, Vol. 61, pp. 138–150, 1995.
A. Viterbi, “Error Bounds on Convolution Codes and an Asymptotically Optimal Decoding Algorithm”, IEEE Information Theory, Vol. 13, pp. 260–269, 1967.
I. Weiss, “Noise Resistant Invariants of Curves”, IEEE Trans. on PAMI, Vol. 15, pp. 943–948, 1993.
I. Weiss, “Geometric Invariants and Object Recognition”, Int. J. of Computer Vision, Vol. 10, pp. 207–231, 1993.
N. Weissberg, S. Sagie, and D. Shaked, “Shape Indexing by Dynamic Programming”, in Proc. of the Israeli IEEE Convention, April 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shaked, D. (2001). Invariant Signatures from Polygonal Approximations of Smooth Curves. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_41
Download citation
DOI: https://doi.org/10.1007/3-540-45129-3_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42120-7
Online ISBN: 978-3-540-45129-7
eBook Packages: Springer Book Archive