Nothing Special   »   [go: up one dir, main page]

Skip to main content

Invariant Signatures from Polygonal Approximations of Smooth Curves

  • Conference paper
  • First Online:
Visual Form 2001 (IWVF 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2059))

Included in the following conference series:

Abstract

In this paper we propose to use invariant signatures of polygonal approximations of smooth curves for projective object recognition. The proposed algorithm is not sensitive to the curve sampling scheme or density, due to a novel re-sampling scheme for arbitrary polygonal approximations of smooth curves. The proposed re-sampling provides for weak-affine invariant parameterization and signature. Curve templates characterized by a scale space of these weak-affine invariant signatures together with a metric based on a modified Dynamic Programming algorithm can accommodate projective invariant object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. M. Bruckstein, R. J. Holt, A. N. Netravali, and T. J. Richardson, “Invariant Signatures for Planar Shapes Under Partial Occlusion”, CVGIP: Image Understanding, Vol. 58, pp. 49–65, 1993.

    Article  Google Scholar 

  2. A. M. Bruckstein, N. Katzir, M. Lindenbaum, and M. Porat, “Similarity Invariant Signatures and Partially Occluded Planar Shapes”, Int. J. Computer Vision, Vol. 7, pp. 271–285, 1992.

    Article  Google Scholar 

  3. A. M. Bruckstein, and A. N. Netravali, “On Differential Invariants of Planar Curves and the Recognition of Partly Occluded Planar Shapes”, AT&T Technical memo, July 1990; also in Proc. of the Int. Workshop on Visual Form, Capri, May 1992.

    Google Scholar 

  4. A. M. Bruckstein, E. Rivlin, and I. Weiss, “Scale Space Local Invariants”, CIS Report No. 9503, Computer Science Department, Technion, Haifa, Israel, February 1995

    Google Scholar 

  5. A. M. Bruckstein, and D. Shaked, “Skew Symmetry Detection via Signature Functions”, Pattern Recognition, Vol. 31, pp. 181–192, 1998.

    Article  Google Scholar 

  6. E. Calabi, P. J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker, “Differential and Numerically Invariant Signature Curves Applied to Object Recognition”, Int. J. Computer Vision, Vol. 26, pp. 107–135, 1998.

    Article  Google Scholar 

  7. E. Calabi, P. J. Olver, and A. Tannenbaum, “Affine Geometry, Curve Flows, and Invariant Numerical Approximations”, Adv. in Math, Vol. 124, pp. 154–196, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Cyganski, J.A. Orr, T.A. Cott, and R.J. Dodson, “An Affine Transform Invariant Curvature Function”, Proceedings of the First ICCV, London, pp. 496–500, 1987.

    Google Scholar 

  9. T. Glauser and H. Bunke, “Edge Length Ratios: An Affine Invariant Shape Representation for Recognition with Occlusions”, Proc. of the 11th ICPR, Hague, 1992.

    Google Scholar 

  10. P. S. Heckbert, “Color Image Quantization for Frame Buffer Display”, http://www-cgi.cs.cmu.edu/asf/cs.cmu.edu/users/ph/www/ciq_thesis

  11. R. J. Holt, and A. N. Netravali, “Using Affine Invariants on Perspective Projections of Plane Curves”, Computer Vision and Image Understanding, Vol. 61, pp. 112–121, 1995.

    Article  Google Scholar 

  12. T. Moons, E. J. Pauwels, L. Van Gool, and A. Oosterlinck, “Foundations of Semi Differential Invariants”, Int. J. of Computer Vision, Vol. 14, 25–47, 1995.

    Article  Google Scholar 

  13. E. J. Pauwels, T. Moons, L. Van Gool, and A. Oosterlinck, “Recognition of Planar shapes Under Affine Distortion”, Int. J. of Computer Vision, Vol. 14, 49–65, 1995.

    Article  Google Scholar 

  14. L. R. Rabiner, and B. H. Juang, “Introduction to Hidden Markov Models”, IEEE ASSP Magazine, pp. 4–16, 1986.

    Google Scholar 

  15. L. R. Rabiner, and S. E. Levinson, Isolated and Connected Word Recognition-Theory and Selected Applications”, IEEE COM, Vol. 29, pp. 621–659, 1981.

    Article  Google Scholar 

  16. L. R. Rabiner, A. E. Rosenberg, and S. E. Levinson, “Considerations in Dynamic Time warping Algorithms for Discrete Word Recognition”, IEEE ASSP, Vol. 26, pp. 575–582, 1978.

    MATH  Google Scholar 

  17. L. Van Gool, T. Moons, D. Ungureanu, and A. Oosterlinck, “The Characterization and Detection of Skewed Symmetry” CVIU, Vol. 61, pp. 138–150, 1995.

    Google Scholar 

  18. A. Viterbi, “Error Bounds on Convolution Codes and an Asymptotically Optimal Decoding Algorithm”, IEEE Information Theory, Vol. 13, pp. 260–269, 1967.

    Article  MATH  Google Scholar 

  19. I. Weiss, “Noise Resistant Invariants of Curves”, IEEE Trans. on PAMI, Vol. 15, pp. 943–948, 1993.

    Google Scholar 

  20. I. Weiss, “Geometric Invariants and Object Recognition”, Int. J. of Computer Vision, Vol. 10, pp. 207–231, 1993.

    Article  Google Scholar 

  21. N. Weissberg, S. Sagie, and D. Shaked, “Shape Indexing by Dynamic Programming”, in Proc. of the Israeli IEEE Convention, April 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shaked, D. (2001). Invariant Signatures from Polygonal Approximations of Smooth Curves. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-45129-3_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42120-7

  • Online ISBN: 978-3-540-45129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics