Abstract
This paper examines the effects of local search on hybrid genetic algorithm performance and population sizing. It compares the performance of a self-adaptive hybrid genetic algorithm (SAHGA) to a non-adaptive hybrid genetic algorithm (NAHGA) and the simple genetic algorithm (SGA) on eight different test functions, including unimodal, multimodal and constrained optimization problems. The results show that the hybrid genetic algorithm substantially reduces required population sizes because of the reduction in population variance. The adaptive nature of the SAHGA algorithm together with the reduction in population size allow for faster solution of the test problems without sacrificing solution quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., D. Fogel and Z. Michalewicz, (eds): Handbook of Evolutionary Computation, Bristol and New York. Institute of Physics Publishing Ltd and Oxford University Press (1997)
Bracken, J. G. P. McCormick: Ausgewählte Anwendungen Nichtlinearer Programmierung. Berliner Union and Kohlhammer, Stuttgart (1970)
Branin, F. K.: A Widely Convergent Method for Finding Multiple Solutions of Simultaneous Nonlinear Equations. IBM J. Res. Develop., pp. 504–522. (1972)
Cai, X., McKinney, D. and Lasdon. L.: Solving Nonlinear Water Management Models Using a Combined Genetic Algorithm and Linear Programming Approach. Advances in Water Resources, 24, 667–676. (2001)
De Jong, K. A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI. (1975)
Dixon, L. C. W. and Szego, G. P.: The Optimization Problem: An Introduction. In Dixon, L. C. W. and Szego, G. P. (Eds.): Towards Global Optimization II, New York: North Holland. (1978)
Espinoza, F., B. S. Minsker, and D. Goldberg. (2001). “A Self Adaptive Hybrid Genetic Algorithm”. L. Spector, E. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, editors. 2001. Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’2001. San Francisco, Morgan Kaufmann Publishers.
Gen, M., Ida, K., and Li, Y.: Bicriteria Transportation Problem by Hybrid Genetic Algorithm. Computers & Industrial Engineering, 35(1–2), 363–366. (1998)
Harik, G.R., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L.: The Gambler’s Ruin Problem, Genetic Algorithms, and the Sizing of Populations.” In Proceedings of the 1997 IEEE Conference on Evolutionary Computation, pp. 7–12, IEEE Press, New York, NY. (1997)
Hogg, R., and Craig: A. Introduction to Mathematical Statistics. Macmillan Publishing Co., Inc., New York. (1978)
Hsiao, C. and Chang, L.: Dynamic Optical Groundwater Management With Inclusion Of Fixed Costs. Journal of Water Resources Planning and Management, ASCE, 128(1), 57–65. (2002)
Lin, W., Delgado-Frias, J, Gause, D., and Vassiliadis, S.: Hybrid Newton-Raphson Genetic Algorithm for the Traveling Salesman Problem. Cybernetics & Systems, 26(4), 387–412. (1995)
Kim, J-H. and H. Myung: Evolutionary Programming Techniques for Constrained Optimization Problems. Evolutionary Computation, 1(2), 129–140. (1997)
Rechenberg, I.: Ecolutionsstrategie: Optimierung Technischer Systeme Nach Prinzipien Der Biologishen Evolution. Frommann-Iolzboog Verlag, Stuttgart. (1973)
Reed, P., Minsker, B. S., and Goldberg, D. E.: Designing a Competent Simple Genetic Algorithm for Search and Optimization. Water Resources Research, 36(12), 3757–3761. (2000)
Schwefel, H. P.: Evolutionsstrategie und Numerische Optimierung. PhD Dissertation, Department of Process Engineering, Technical University of Berlin, Berlin, Germany. (1975)
Schwefel, H. P.: Numerical Optimization of Computer Models. John Wiley & Sons, Chichester-New York-Brisbane-Toronto, (1981)
Spitzer, F.: Principles of random walk. D. Van Nostrand Company, Inc. (1964)
Thierens, D., Goldberg, D. E., and Guimaraes Pereira: A. Domino Convergence, Drift, and the Temporal-Salience Structure of Problems. In The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 535–540, IEEE Press, New York, NY, (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Espinoza, F.P., Minsker, B.S., Goldberg, D.E. (2003). Performance Evaluation and Population Reduction for a Self Adaptive Hybrid Genetic Algorithm (SAHGA). In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_104
Download citation
DOI: https://doi.org/10.1007/3-540-45105-6_104
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40602-0
Online ISBN: 978-3-540-45105-1
eBook Packages: Springer Book Archive