Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximate Rank Aggregation

Preliminary Version

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2697))

Included in the following conference series:

  • 911 Accesses

Abstract

In this paper, we consider algorithmic issues of the rank aggregation problem for information retrieval on the Web. We introduce a weighted version of the metric of the normalized Kendall-τ distance, originally proposed for the problem by Dwork, et al.,7 and show that it satisfies the extended Condorcet criterion. Our main technical contribution is a polynomial time approximation scheme, in addition to a practical heuristic algorithm with ratio 2 for the NP-hard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Arora, A. Frieze and H. Kaplan, A new rounding procedure for the assignment problem with applications to dense graph arrangement problems, FOCS96:21–30

    Google Scholar 

  2. S. Arora, D. Karger and M. Karpinski, Polynomial-time approximation schemes for dense instances of NP-hard optimization problems, STOC95:284–293

    Google Scholar 

  3. J.P. Barthelemy, A. Guenoche and O. Hudry, Median linear orders: Heuristics and a branch and bound algorithm, European Journal of Operational Research 42(1989): 313–325.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.P. Barthelemy and B. Monjardet, The median Procedure in cluster analysis and social choice theory, Mathematical Social Sciences 1(1981): 235–267.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.J. Bartholdi, D.A. Tovey and M.A. Trick, Voting schemes for which it can be difficult to tell who won the election, Social Choice and Welfare, 6(1989): 157–165.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Charon, A. Guenoche, O. Hudry and F. Woirgard, New results on the computation of median orders, Discrete Mathematics 165/166(1997): 139–153.

    Article  MathSciNet  Google Scholar 

  7. C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation methods for the web, WWW10 (2001), 613–622.

    Google Scholar 

  8. D. Gillman, A Chernoff bound for random walks on expanders, SIAM J. Comput. 27(1998): 1203–1220.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds., Complexity of Computer Computations (Plenue, New York, 1972) 85–103.

    Google Scholar 

  10. J.G. Kemeny, Mathematics without numbers, Daedalus 88(1959): 577–591.

    Google Scholar 

  11. P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing integer programs, Journal of Computer and System Sciences 37(1988): 130–143.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Raghavan and C. Thompson, Randomized rounding: a technique for provably good algorithms and algorithmic proofs, Combinatorica 7(1987): 365–374.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, X., Fang, Q., Zhu, S. (2003). Approximate Rank Aggregation. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45071-8_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40534-4

  • Online ISBN: 978-3-540-45071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics