Nothing Special   »   [go: up one dir, main page]

Skip to main content

Infrared Sensor Data Correction for Local Area Map Construction by a Mobile Robot

  • Conference paper
  • First Online:
Developments in Applied Artificial Intelligence (IEA/AIE 2003)

Abstract

The construction of local area maps on the based on heterogeneous sensor readings is considered in this paper. The Infrared Sensor Data Correction method is presented for the construction of local area maps. This method displays lower calculation complexity and broader universality compared to existing methods and this is important for on-line robot activity. The simulation results showed the high accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Popov E.P., Oismennyj G.V., The robotics bases, M: “High school”, 1990, pp. 224

    Google Scholar 

  2. Dorst L., An Introduction to Robotics for the computer sciences, University of Amsterdam, 1993, pp.78

    Google Scholar 

  3. Durrant-Whyte H. F., Integration, Coordination and Control of Multi-sensor Robot Systems, Kluwer, Boston, MA, 1988.

    Google Scholar 

  4. Joris van Dam, Environment Modeling for Mobile Robots: Neural Learning for Sensor Fusion, Amsterdam: University van Amsterdam — Met lit. opg., 1998, pp.225

    Google Scholar 

  5. Barraquand J., Langlois B., Latombe J.C., Numerical potential field techniques for robot path planning, Report No. STAN CS 89 1285, Dept. of Computer Science, Stanford University, 1989

    Google Scholar 

  6. Besierre P., Dedieu E., Mazer E., Representing robot/environment interactions using probabilities: the beam in the beam experiment, From Perception to Action Conference, IEEE computer society press, Sept.1994

    Google Scholar 

  7. Borenstein J., Koren Y., Real-time obstacle avoidance for fast mobile robots, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, Sept./Oct. 1989, pp. 1179–1187

    Article  Google Scholar 

  8. Mongi A. Abidi, Rafael C. Gonzalez, Data fusion in robotics and machine intelligence, Academic Press, Inc., 1992, pp.546.

    Google Scholar 

  9. Richard J. Duro, Jose Santos, Manuel Graña, Biologically inspired robot behavior engineering, Physica-Verlag, 2003, pp. 438

    Google Scholar 

  10. Poncela, E.J. Perez, A. Bandera, C. Urdiales, F. Sandoval, Efficient integration of metric and topological maps for directed exploration of unknown environments, Robotics and Autonomous Systems, No. 41 (2002), pp. 21–39

    Article  Google Scholar 

  11. H. Maaref, C. Barret, Sensor-based navigation of a mobile robot in an indoor environment, Robotics and Autonomous Systems, No. 38 (2002) 1–18

    Article  MATH  Google Scholar 

  12. Brooks R., Iyengar S., “Multi-sensor fusion: fundamentals and applications with software”. Prentice-Hall PTR, 1998, 416p

    Google Scholar 

  13. J.L. Crowly, Y. Demazeau, Principles and techniques for sensor data fusion, Signal Processing, No. 32, 1993, pp. 5–27.

    Article  Google Scholar 

  14. Golovko V.A., Neurointelligence: theory and application, BPI, Brest, 1999, 228 p.

    Google Scholar 

  15. Flynn A.M., Combining sonar and infrared sensors for mobile robot navigation, International journal of robotic research, Vol. 7, No. 6, 1988

    Google Scholar 

  16. G. Benet, F. Blanes, J.E. Simó, P. Pérez, Using infrared sensors for distance measurement in mobile robots, Robotics and Autonomous Systems, No. 40 (2002), pp. 255–266

    Article  Google Scholar 

  17. Stephen J. Chapman, MATLAB Programming for Engineers, 2nd Edition, Brooks/Cole Publishing Company, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koval, V., Turchenko, V., Sachenko, A., Becerra, J.A., Duro, R.J., Golovko, V. (2003). Infrared Sensor Data Correction for Local Area Map Construction by a Mobile Robot. In: Chung, P.W.H., Hinde, C., Ali, M. (eds) Developments in Applied Artificial Intelligence. IEA/AIE 2003. Lecture Notes in Computer Science(), vol 2718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45034-3_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45034-3_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40455-2

  • Online ISBN: 978-3-540-45034-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics