Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Automata-Theoretic Completeness Proof for Interval Temporal Logic

Extended Abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1853))

Included in the following conference series:

Abstract

Interval Temporal Logic (ITL) is a formalism for reasoning about time periods. To date no one has proved completeness of a relatively simple ITL deductive system supporting infinite time and permitting infinite sequential iteration comparable to ω-regular expressions. We have developed a complete axiomatization for such a version of quantified ITL over finite domains and can show completeness by representing finite-state automata in ITL and then translating ITL formulas into them. Here we limit ourselves to finite time. The full paper (and another conference paper [15]) extends the approach to infinite time.

Part of the research described here has been kindly supported by EPSRC research grant GR/K25922.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bowman and S. J. Thompson. A complete axiomatization of Interval Temporal Logic with projection. Technical Report 6-00, Computing Lab., Univ. of Kent, UK, Jan. 2000.

    Google Scholar 

  2. A. Cau and H. Zedan. Refining Interval Temporal Logic specifications. In M. Bertran and T. Rus, eds., Transformation-Based Reactive Systems Development, LNCS 1231, pp. 79–94. AMAST, Springer-Verlag, 1997.

    Google Scholar 

  3. B. Dutertre. Complete proof systems for first order interval temporal logic. In Proc. 10th LICS, pp. 36–43. IEEE Computer Soc. Press, June 1995.

    Google Scholar 

  4. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. Comput. Syst. Sci., 18(2):194–211, Apr. 1979.

    Google Scholar 

  5. R. W. S. Hale. Programming in Temporal Logic. PhD thesis, Computer Laboratory, Cambridge University, Cambridge, England, Oct. 1988.

    Google Scholar 

  6. J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on temporal intervals. In J. Diaz, ed., Proc. ICALP’ 83, LNCS 154, pp. 278–291. Springer-Verlag, 1983.

    Google Scholar 

  7. Y. Kesten and A. Pnueli. A complete proof system for QPTL. In Proc. 10th LICS, pp. 2–12. IEEE Computer Soc. Press, 1995.

    Google Scholar 

  8. B. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Dept. Computer Science, Stanford Univ., 1983. Tech. rep. STAN-CS-83-970.

    Google Scholar 

  9. B. Moszkowski. A temporal logic for multi-level reasoning about hardware. In Proc. 6-th Int’l. Symp. on Computer Hardware Description Languages, pp. 79–90, Pittsburgh, Penn., May 1983. North-Holland Pub. Co.

    Google Scholar 

  10. B. Moszkowski. A temporal logic for multilevel reasoning about hardware. Computer, 18:10–19, 1985.

    Article  Google Scholar 

  11. B. Moszkowski. Executing Temporal Logic Programs. Cambridge U. Press, 1986.

    Google Scholar 

  12. B. Moszkowski. Some very compositional temporal properties. In E.-R. Olderog, ed., Programming Concepts, Methods and Calculi, IFIP Transactions A-56, pp. 307–326. IFIP, Elsevier Science B.V (North-Holland), 1994.

    Google Scholar 

  13. B. Moszkowski. Compositional reasoning about projected and infinite time. In Proc. 1st IEEE Int’l Conf. on Engineering of Complex Computer Systems (ICECCS’95), pp. 238–245. IEEE Computer Soc. Press, 1995.

    Google Scholar 

  14. B. Moszkowski. Compositional reasoning using Interval Temporal Logic and Tempura. In W.-P. deRoever et al., eds., Compositionality: The Significant Difference, LNCS 1536, pp. 439–464. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  15. B. Moszkowski. A complete axiomatization of interval temporal logic with infinite time. In Proc. 15th Annual IEEE Symp. on Logic in Computer Science (LICS 2000). IEEE Computer Soc. Press, June 2000.

    Google Scholar 

  16. B. Paech. Gentzen-systems for propositional temporal logics. In E. Börger et al., eds., Proc. 2nd Workshop on Computer Science Logic, Duisburg (FRG), LNCS 385, pp. 240–253. Springer-Verlag, Oct. 1988.

    Google Scholar 

  17. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17-th Annual IEEE Symposium on Foundations of Computer Science, pp. 109–121, 1976.

    Google Scholar 

  18. R. Rosner and A. Pnueli. A choppy logic. In Proc. 1st LICS, pp. 306–313. IEEE Computer Soc. Press, June 1986.

    Google Scholar 

  19. D. Siefkes. Decidable Theories I: Büchi’s Monadic Second Order Successor Arithmetic, Lecture Notes in Mathematics 120. Springer-Verlag, Berlin, 1970.

    MATH  Google Scholar 

  20. Wang Hanpin and Xu Qiwen. Temporal logics over infinite intervals. Technical Report 158, UNU/IIST, Macau, 1999.

    Google Scholar 

  21. Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Inf. Process. Lett., 40(5):269–276, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moszkowski, B.C. (2000). An Automata-Theoretic Completeness Proof for Interval Temporal Logic. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming. ICALP 2000. Lecture Notes in Computer Science, vol 1853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45022-X_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45022-X_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67715-4

  • Online ISBN: 978-3-540-45022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics