Nothing Special   »   [go: up one dir, main page]

Skip to main content

L(2, 1)-Coloring Matrogenic Graphs

(Extended Abstract)

  • Conference paper
  • First Online:
LATIN 2002: Theoretical Informatics (LATIN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2286))

Included in the following conference series:

Abstract

This paper investigates a variant of the general problem of assigning channels to the stations of a wireless network when the graph representing the possible interferences is a matrogenic graph. In this problem, channels assigned to adjacent vertices must be at least two apart, while the same channel can be reused for vertices whose distance is at least three. Linear time algorithms are provided for matrogenic graphs and, in particular, for two specific subclasses: threshold graphs and split matrogenic graphs. For the first one of these classes the algorithm is exact, while for the other ones it approximates the optimal solution. Consequently, improvements on previously known results concerning subclasses of cographs, split graphs and graphs with diameter two are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-Coloring of Graphs. Proc. of 17th Int.l Symp. on Theoretical Aspects of Computer Science (STACS 2000) LNCS 1770 (2000) 395–406

    MATH  Google Scholar 

  2. Bertossi, A.A., Pinotti, C., Tan, R.: L(2, 1)-and L(2, 1, 1)-Labeling of Graphs with Application to Channel Assignment in Wireless Networks. Proc. of the 4th ACM Int.l Workshop on Disc. Alg. and Methods for Mobile Compu. and Comm. (DIAL M) (2000)

    Google Scholar 

  3. Calamoneri, T., Petreschi, R.: The L(2, 1)-Labeling of Planar Graphs. Proc. of the 5th ACM Int.l Workshop on Disc. Alg. and Methods for Mobile Compu. and Comm. (DIAL M) (2001) 28–33

    Google Scholar 

  4. Calamoneri, T., Petreschi, R.: L(2, 1)-Coloring of Regular Tiling. 1st Cologne-Twente Workshop (CTW’ 01) (2001).

    Google Scholar 

  5. Calamoneri, T., Petreschi, R.: λ-Coloring Unigraphs. Manuscript (2001).

    Google Scholar 

  6. Chang, G.J., Ke, W., Kuo, D., Liu, D., Yeh, R.: On L(d, 1)-Labeling of Graphs. Disc. Math. 220 (2000) 57–66

    Article  Google Scholar 

  7. Chang, G.J., Kuo, D.: The L(2, 1)-labeling Problem on Graphs. SIAM J. Disc. Math. 9 (1996) 309–316

    Article  MathSciNet  Google Scholar 

  8. Chvatal, V., Hammer, P.: Aggregation of inequalities integer programming. Ann Discrete Math 1 (1977) 145–162

    Article  MathSciNet  Google Scholar 

  9. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter Complexity of λ-Labelings. Proc. Graph-Theoretic Concepts of Compu. Sci. (WG99) LNCS 1665 (1999) 350–363

    MATH  Google Scholar 

  10. Foldes, S., Hammer, P.: On a class of matroid producing graphs. Colloq. Math.Soc.J. Bolyai (Combinatorics), 18 (1978) 331–352

    MathSciNet  MATH  Google Scholar 

  11. Griggs, J.R., Yeh, R.K.: Labeling graphs with a Condition at Distance 2. SIAM J. Disc. Math 5 (1992) 586–595

    Article  Google Scholar 

  12. Henderson, P.H., Zalcstein, Y.: A graph-theoretic characterization of the PV-chunk class of syncronizing primitives. SIAM J. Comput. 6 (1977) 88–108

    Article  MathSciNet  Google Scholar 

  13. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Ann. Discrete Math. 56, North-Holland, Amsterdam (1995)

    Google Scholar 

  14. Marchioro, P., Morgana, A., Petreschi, R., Simeone, B.: Degree sequences of matrogenic graphs. Discrete Math. 51 (1984) 47–61

    Article  MathSciNet  Google Scholar 

  15. Sakai D.: Labeling Chordal Graphs: Distance Two Condition. SIAM J. Disc. Math 7 (1994) 133–140

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calamoneri, T., Petreschi, R. (2002). L(2, 1)-Coloring Matrogenic Graphs. In: Rajsbaum, S. (eds) LATIN 2002: Theoretical Informatics. LATIN 2002. Lecture Notes in Computer Science, vol 2286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45995-2_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-45995-2_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43400-9

  • Online ISBN: 978-3-540-45995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics