Abstract
We introduce a new version of the Rough Set Exploration System - a software tool featuring a library of methods and a graphical user interface supporting variety of rough-set-based computations. Methods, features and abilities of the implemented software are discussed and illustrated with a case study in data analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bay, S.D.: Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets. In: Proc. of 15 ICML, Morgan Kaufmann, Madison, 1998
Bazan J., A Comparison of Dynamic and non-Dynamic Rough Set Methods for Extracting Laws from Decision Tables, In Polkowski L.(ed.), Rough Sets in Knowledge Discovery, Physica Verlag, Heidelberg, 1998 [10], vol. 1, pp. 321–365
Bazan, J.G., Nguyen, H.S., Nguyen, S.H, Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds), Rough Set Methods and Applications, Physica-Verlag, 2000 pp. 49–88.
Bazan J., Szczuka M. RSES and RSESlib-A Collection of Tools for Rough Set Computations, Proc. of RSCTC’2000, LNAI 2005, Springer Verlag, Berlin, 2001
Garey M., Johnson D., Computers and Intarctability: A Guide to the Theory of NP-completness, W.H. Freeman&Co., San Francisco, 1998, (twentieth print)
GrzymaIla-Busse J., A New Version of the Rule Induction System LERS Fundamenta Informaticae, Vol. 31(1), 1997, pp. 27–39
Nguyen Sinh Hoa, Nguyen Hung Son, Discretization Methods in Data Mining, In Polkowski L.(ed.), Rough Sets in Knowledge Discovery, Physica Verlag, Heidelberg, 1998 [10] vol. 1, pp. 451–482
Hoa S. Nguyen, A. Skowron and P. Synak, Discovery of Data Patterns with Applications to Decomposition and Classfification Problems. In Polkowski L.(ed.), Rough Sets in Knowledge Discovery, Physica Verlag, Heidelberg, 1998 [10] vol. 2, pp. 55–97.
Michie D., Spiegelhalter D. J., Taylor C. C., Machine Learning, Neural and Statistical Classification, Ellis Horwood, London, 1994
Skowron A., Polkowski L. (ed.), Rough Sets in Knowledge Discovery vol. 1 and 2, Physica Verlag, Heidelberg, 1998
Ślęzak D., Wróblewski J., Classification Algorithms Based on Linear Combinations of Features. In: Proc. of PKDD’99. LNAI 1704, Springer Verlag, Berlin, 1999, pp. 548–553.
Wróblewski J., Covering with Reducts-A Fast Algorithm for Rule Generation, Proceeding of RSCTC’98, LNAI 1424, Springer Verlag, Berlin, 1998, pp. 402–407
Wróblewski J.: Ensembles of classifiers based on approximate reducts, Fundamenta Informaticae 47(3,4), IOS Press (2001) 351–360.
Bazan J., Szczuka M., The RSES Homepage, http://alfa.mimuw.edu.pl/~rses
Ørn A., The ROSETTA Homepage, http://www.idi.ntnu.no/~aleks/rosetta
Blake C.L., Merz C.J., UCI Repository of machine learning databases, Irvine, CA: University of California, 1998, http://www.ics.uci.edu/~mlearn
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J.G., Szczuka, M.S., Wróblewski, J. (2002). A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds) Rough Sets and Current Trends in Computing. RSCTC 2002. Lecture Notes in Computer Science(), vol 2475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45813-1_52
Download citation
DOI: https://doi.org/10.1007/3-540-45813-1_52
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44274-5
Online ISBN: 978-3-540-45813-5
eBook Packages: Springer Book Archive