Nothing Special   »   [go: up one dir, main page]

Skip to main content

P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D): A Probabilistic Extension of \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) for Probabilistic Ontologies in the Semantic Web

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2424))

Included in the following conference series:

Abstract

Ontologies play a central role in the development of the semantic web, as they provide precise definitions of shared terms in web resources. One important web ontology language is DAML+OIL; it has a formal semantics and a reasoning support through a mapping to the expressive description logic \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) with the addition of inverse roles. In this paper, we present a probabilistic extension of \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D), called P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D), to allow for dealing with probabilistic ontologies in the semantic web. The description logic P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) is based on the notion of probabilistic lexicographic entailment from probabilistic default reasoning. It allows to express rich probabilistic knowledge about concepts and instances, as well as default knowledge about concepts.We also present sound and complete reasoning techniques for P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D), which are based on reductions to classical reasoning in \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) and to linear programming, and which show in particular that reasoning in P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) is decidable.

Alternate address: Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, 1040Wien, Austria. E-mail: lukasiewicz@kr.tuwien.ac.at.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Amarger, D. Dubois, and H. Prade. Constraint propagation with imprecise conditional probabilities. In Proceedings UAI-91, pages 26–34, 1991.

    Google Scholar 

  2. T. Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.

    Google Scholar 

  3. T. Eiter, J. J. Lu, T. Lukasiewicz, and V. S. Subrahmanian. Probabilistic object bases. ACM Transactions on Database Systems, 26(3):264–312, 2001.

    Article  MATH  Google Scholar 

  4. T. Eiter, T. Lukasiewicz, and M. Walter. A data model and algebra for probabilistic complex values. Ann. Math. Artif. Intell., 33(2–4):205–252, 2001.

    Article  MathSciNet  Google Scholar 

  5. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuiness, and P. F. Patel-Schneider. OIL:An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.

    Article  Google Scholar 

  6. A. M. Frisch and P. Haddawy. Anytime deduction for probabilistic logic. Artif. Intell., 69:93–122, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D) for probabilistic ontologies in the semantic web. Technical Report INFSYS RR-1843-02-06, Institut für Informationssysteme, Technische UniversitätWien, April 2002.

    Google Scholar 

  8. M. Goldszmidt and J. Pearl. On the consistency of defeasible databases. Artif. Intell., 52(2):121–149, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Heinsohn. Probabilistic description logics. In Proceedings UAI-94, pages 311–318, 1994.

    Google Scholar 

  10. J. Hendler and D. L. McGuiness. The DARPA agent markup language. IEEE Intelligent Systems, 15(6):67–73, 2000.

    Article  Google Scholar 

  11. I. Horrocks. DAML+OIL: A description logic for the semantic web. IEEE Bulletin of the Technical Committee on Data Engineering, 25(1):4–9, 2002.

    MathSciNet  Google Scholar 

  12. I. Horrocks. DAML+OIL: A reason-able web ontology language. In Proceedings EDBT-02, volume 2287 of LNCS, pages 2–13. Springer, 2002.

    Google Scholar 

  13. I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The ontology inference layer. Technical Report IR-479, Vrije Universiteit Amsterdam, 2000.

    Google Scholar 

  14. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design ofDAML+OIL: An ontology language for the semantic web. In Proceedings AAAI-02, 2002. To appear.

    Google Scholar 

  15. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proceedings IJCAI-01, pages 199–204, 2001.

    Google Scholar 

  16. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In Proceedings LPAR-99, volume 1705 of LNCS, pages 161–180. Springer, 1999.

    Google Scholar 

  17. M. Jaeger. Probabilistic reasoning in terminological logics. In Proceedings KR-94, pages 305–316, 1994.

    Google Scholar 

  18. D. Koller, A. Levy, and A. Pfeffer. P-CLASSIC: A tractable probabilistic description logic. In Proceedings AAAI-97, pages 390–397, 1997.

    Google Scholar 

  19. D. Lehmann. Another perspective on default reasoning. Ann. Math. Artif. Intell., 15(1):61–82, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Lukasiewicz. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res., 10:199–241, 1999.

    MATH  MathSciNet  Google Scholar 

  21. T. Lukasiewicz. Probabilistic logic programming under inheritance with overriding. In Proceedings UAI-01, pages 329–336, 2001.

    Google Scholar 

  22. T. Lukasiewicz. Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Intell., 34(1–3):35–88, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  23. N. J. Nilsson. Probabilistic logic. Artif. Intell., 28:71–88, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Z. Pan and I. Horrocks. Semantic web ontology reasoning in the SHOQ(D n) description logic. In Proceedings DL-02, 2002.

    Google Scholar 

  25. U. Straccia. A fuzzy description logic. In Proceedings AAAI-98, pages 594–599, 1998.

    Google Scholar 

  26. U. Straccia. Reasoning within fuzzy description logics. J. Artif. Intell. Res., 14:137–166, 2001.

    MATH  MathSciNet  Google Scholar 

  27. C. B. Tresp and R. Molitor. Adescription logic for vague knowledge. In Proceedings ECAI-98, pages 361–365, 1998.

    Google Scholar 

  28. J. Yen. Generalizing term subsumption languages to fuzzy logic. In Proceedings IJCAI-91, pages 472–477, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giugno, R., Lukasiewicz, T. (2002). P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D): A Probabilistic Extension of \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds) Logics in Artificial Intelligence. JELIA 2002. Lecture Notes in Computer Science(), vol 2424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45757-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45757-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44190-8

  • Online ISBN: 978-3-540-45757-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics