Abstract
Ontologies play a central role in the development of the semantic web, as they provide precise definitions of shared terms in web resources. One important web ontology language is DAML+OIL; it has a formal semantics and a reasoning support through a mapping to the expressive description logic \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) with the addition of inverse roles. In this paper, we present a probabilistic extension of \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D), called P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D), to allow for dealing with probabilistic ontologies in the semantic web. The description logic P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) is based on the notion of probabilistic lexicographic entailment from probabilistic default reasoning. It allows to express rich probabilistic knowledge about concepts and instances, as well as default knowledge about concepts.We also present sound and complete reasoning techniques for P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D), which are based on reductions to classical reasoning in \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) and to linear programming, and which show in particular that reasoning in P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) is decidable.
Alternate address: Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, 1040Wien, Austria. E-mail: lukasiewicz@kr.tuwien.ac.at.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Amarger, D. Dubois, and H. Prade. Constraint propagation with imprecise conditional probabilities. In Proceedings UAI-91, pages 26–34, 1991.
T. Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.
T. Eiter, J. J. Lu, T. Lukasiewicz, and V. S. Subrahmanian. Probabilistic object bases. ACM Transactions on Database Systems, 26(3):264–312, 2001.
T. Eiter, T. Lukasiewicz, and M. Walter. A data model and algebra for probabilistic complex values. Ann. Math. Artif. Intell., 33(2–4):205–252, 2001.
D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuiness, and P. F. Patel-Schneider. OIL:An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.
A. M. Frisch and P. Haddawy. Anytime deduction for probabilistic logic. Artif. Intell., 69:93–122, 1994.
R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D) for probabilistic ontologies in the semantic web. Technical Report INFSYS RR-1843-02-06, Institut für Informationssysteme, Technische UniversitätWien, April 2002.
M. Goldszmidt and J. Pearl. On the consistency of defeasible databases. Artif. Intell., 52(2):121–149, 1991.
J. Heinsohn. Probabilistic description logics. In Proceedings UAI-94, pages 311–318, 1994.
J. Hendler and D. L. McGuiness. The DARPA agent markup language. IEEE Intelligent Systems, 15(6):67–73, 2000.
I. Horrocks. DAML+OIL: A description logic for the semantic web. IEEE Bulletin of the Technical Committee on Data Engineering, 25(1):4–9, 2002.
I. Horrocks. DAML+OIL: A reason-able web ontology language. In Proceedings EDBT-02, volume 2287 of LNCS, pages 2–13. Springer, 2002.
I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The ontology inference layer. Technical Report IR-479, Vrije Universiteit Amsterdam, 2000.
I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design ofDAML+OIL: An ontology language for the semantic web. In Proceedings AAAI-02, 2002. To appear.
I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proceedings IJCAI-01, pages 199–204, 2001.
I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In Proceedings LPAR-99, volume 1705 of LNCS, pages 161–180. Springer, 1999.
M. Jaeger. Probabilistic reasoning in terminological logics. In Proceedings KR-94, pages 305–316, 1994.
D. Koller, A. Levy, and A. Pfeffer. P-CLASSIC: A tractable probabilistic description logic. In Proceedings AAAI-97, pages 390–397, 1997.
D. Lehmann. Another perspective on default reasoning. Ann. Math. Artif. Intell., 15(1):61–82, 1995.
T. Lukasiewicz. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res., 10:199–241, 1999.
T. Lukasiewicz. Probabilistic logic programming under inheritance with overriding. In Proceedings UAI-01, pages 329–336, 2001.
T. Lukasiewicz. Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Intell., 34(1–3):35–88, 2002.
N. J. Nilsson. Probabilistic logic. Artif. Intell., 28:71–88, 1986.
J. Z. Pan and I. Horrocks. Semantic web ontology reasoning in the SHOQ(D n) description logic. In Proceedings DL-02, 2002.
U. Straccia. A fuzzy description logic. In Proceedings AAAI-98, pages 594–599, 1998.
U. Straccia. Reasoning within fuzzy description logics. J. Artif. Intell. Res., 14:137–166, 2001.
C. B. Tresp and R. Molitor. Adescription logic for vague knowledge. In Proceedings ECAI-98, pages 361–365, 1998.
J. Yen. Generalizing term subsumption languages to fuzzy logic. In Proceedings IJCAI-91, pages 472–477, 1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giugno, R., Lukasiewicz, T. (2002). P-\( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D): A Probabilistic Extension of \( \mathcal{S}\mathcal{H}\mathcal{O}\mathcal{Q} \)(D) for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds) Logics in Artificial Intelligence. JELIA 2002. Lecture Notes in Computer Science(), vol 2424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45757-7_8
Download citation
DOI: https://doi.org/10.1007/3-540-45757-7_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44190-8
Online ISBN: 978-3-540-45757-2
eBook Packages: Springer Book Archive