Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning of Class Descriptions from Class Discriminations: A Hybrid Approach for Relational Objects

  • Conference paper
  • First Online:
KI 2002: Advances in Artificial Intelligence (KI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2479))

Included in the following conference series:

Abstract

The paper addresses the question how learning class discrimination and learning characteristic class descriptions can be related in relational learning. We present the approach TRITOP/MATCHBOX combining the relational decision tree algorithm TRITOP with the connectionist approach MATCHBOX. TRITOP constructs efficiently a relational decision tree for the fast discrimination of classes of relational descriptions, while MATCHBOX is used for constructing class prototypes.

Although TRITOP’s decision trees perform very well in the classification task, they are difficult to understand and to explain. In order to overcome this disadvantage of decision trees in general, in a second step the decision tree is supplemented by prototypes. Prototypes are generalised graphtheoretic descriptions of common substructures of those subclasses of the training set that are defined by the leaves of the decision tree. Such prototypes give a comprehensive and understandable description of the subclasses. In the prototype construction, the connectionist approach MATCHBOX is used to perform fast graph matching and graph generalisation, which are originally NP-complete tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Bisson. Conceptual clustering in a first order logic representation. In B. Neumann, editor, Proc. of the 10th EC AI, pages 458–462. John Wiley & Sons, 1992.

    Google Scholar 

  2. H. Blockeel, L. DeRaedt, and J. Ramon. Top-down induction of clustering trees. In J. Shavlik, editor, Proceedings of the 15th International Conference on Machine Learning, pages 55–63, 1998.

    Google Scholar 

  3. J. Bruck and J. W. Goodman. On the power of neural networks for solving hard problems. Journal of Complexity, 6:129–135, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  4. L.I. Burke and J.P. Ignizio. Neural networks and operations research: An overview. Computers Ops. Res., 19(3/4):179–189, 1992.

    Article  MATH  Google Scholar 

  5. B. Dolsak and S. Muggleton. The application of Inductive Logic Programming to finite element mesh design. In S. Muggleton, editor, Inductive Logic Programming. Academic Press, London, 1992.

    Google Scholar 

  6. W. Emde and D. Wettschereck. Relational instance based learning. In L. Saitta, editor, Proc. 13th ICML, pages 122–130. Morgan Kaufmann Publishers, 1996.

    Google Scholar 

  7. F. Esposito, A. Laterza, D. Malerba, and G. Semerano. Refinement of datalog programs. In ICML’ 96 Workshop on “Datamining with Inductive Logic Programming, pages 73–94, 1996.

    Google Scholar 

  8. J. A. Feldman, M. A. Fanty, N. H. Goddard, and K. J. Lynne. Computing with structured connectionist networks. CACM, 31(2):170–187, February 1988.

    Google Scholar 

  9. P. Geibel. Induktive Konstruktion von merkmalsbasierten und logischen Klassifikatoren für relationale Strukturen. PhD thesis, TU Berlin, 1999.

    Google Scholar 

  10. P. Geibel and F. Wysotzki. Learning relational concepts with decision trees. In L. Saitta, editor, Machine Learning: Proc. of the 13th Int. Conf. Morgan Kaufmann Publishers, San Fransisco, CA, 1996.

    Google Scholar 

  11. P. Geibel and F. Wysotzki. A logical framework for graph theoretic decision tree learning. In N. Lavrac and S. Dzeroski, editors, Proc. ILP 97. Springer, 1997.

    Google Scholar 

  12. D. Haussler. Learning Conjunctive Concepts in Structural Domains. Machine Learning, 4:7–40, 1989.

    Google Scholar 

  13. F. Hayes-Roth and J. McDermott. Knowledge acquisition from structural descriptions. In Raj Reddy, editor, Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages 356–362, Cambridge, MA, August 1977. William Kaufmann.

    Google Scholar 

  14. N. Helft. Inductive generalization: A logical framework. In Proceedings of the Second Working Session on Learning, pages 149–157, 1987.

    Google Scholar 

  15. J.-U. Kietz. A comparative study of structural most specific generalisations used in machine learning. In Proc. ILP-93, pages 149–164, Ljubljana, Slovenia, 1993. J. Stefan Institute Tech. Rep. IJS-DP-6707.

    Google Scholar 

  16. M. Manago. Knowledge intensive induction. In A. M. Segre, editor, Proceedings of the 6th International Workshop on Machine Learning, pages 151–155, Ithaca, 1989. Morgan Kaufmann.

    Google Scholar 

  17. G. D. Plotkin. A note on inductive generalization. In Machine Intelligence, pages 153–164. Edinburgh University Press, 1969.

    Google Scholar 

  18. L. De Raedt and H. Blockeel. Using logical decision trees for clustering. In N. Lavrač and S. Džeroski, editors, Proc. of the 7th Int. WS on ILP, volume 1297 of LNAI, pages 133–140. Springer, September 17–20, 1997.

    Google Scholar 

  19. K. Schädler and F. Wysotzki. A connectionist approach to distance-based analysis of relational data. In X. Liu, P. Cohen, and M. Berthold, editors, Proc. of the IDA-97, pages 137–148. Springer, 1997.

    Google Scholar 

  20. K. Schädler and F. Wysotzki. Theoretical foundations of a special neural net approach for graphmatching. Technical Report 96-26, TU Berlin, CS Dept., 1996.

    Google Scholar 

  21. K. Schädler and F. Wysotzki. Comparing structures using a hopfield-style neural network. Applied Intelligence-special issue on Neural Networks and Structured Knowledge, 11(1):5–30, 1999.

    Google Scholar 

  22. A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Mutagenesis: Ilp experiments in a non-determinate biological domain. In S. Wrobel, editor, Proc. of the Fourth Intl. WS on ILP, number 237 in GMD-Studien, pages 217–232, 1994.

    Google Scholar 

  23. A. Srinivasas, R.D. Kind, S.H. Muggleton, and M. J. E Sternberg. Carcinogenesis predictions using ILP. In N. Lavrac and S. Dzeroski, editors, Proc. ILP-97, number 1297 in LNAI, pages 273–287. Springer-Verlag, 1997.

    Google Scholar 

  24. S. A. Vere. Induction of Concepts in the Predicate Calculus. In Proc. of the Fourth Intl. Joint Conf. on AI, volume 1, pages 281–287, 1975.

    Google Scholar 

  25. F. Wysotzki. Artificial Intelligence and Artificial Neural Nets. In Proc. 1st WS on AI, Shanghai, September 1990. TU Berlin and Jiao Tong University Shanghai.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geibel, P., Schädler, K., Wysotzki, F. (2002). Learning of Class Descriptions from Class Discriminations: A Hybrid Approach for Relational Objects. In: Jarke, M., Lakemeyer, G., Koehler, J. (eds) KI 2002: Advances in Artificial Intelligence. KI 2002. Lecture Notes in Computer Science(), vol 2479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45751-8_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45751-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44185-4

  • Online ISBN: 978-3-540-45751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics