Nothing Special   »   [go: up one dir, main page]

Skip to main content

Self-Organizing Map for Hyperspectral Image Analysis

  • Conference paper
  • First Online:
Bio-Inspired Applications of Connectionism (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2085))

Included in the following conference series:

  • 480 Accesses

Abstract

In this paper we present a neural network methodology used for classifying an hyperspectral image referencied as Indian Pines. The network parameters (learning and neighborhood function) are adjusted using a test battery generated from the image, selecting the values that give the best robutness and discrimination capacity. The availity of ground truth allows us to intriduce a new stadistical measure to quantify the resulting classification accuracy. The results of this methodology show an accuracy of 80% in the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greeen, R.O., Editor, AVIRIS Earth Science Workshop Proceedings, 1988-2000. Available at http://makalu.jpl.nasa.gov/

  2. Ifarraguerri, A.; Chang, C.-I. “Multispectral and Hyperspectral Image Analysis with Convex Cones”. IEEE Trans. Geoscience and Remote Sensing, Vol. 37 Issue 2 Part 1, March 1999, 756–770.

    Article  Google Scholar 

  3. Jimenez, L.O., Morales-Morell, A., Creus, A., “Classification of Hyperdimensional Data Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority Voting, and Neural Networks”, IEEE Trans. Geoscience and Remote Sensing, Vol. 37 Issue 3 Part 1, May 1999,. 1360–1366.

    Article  Google Scholar 

  4. Richardson L and Kruse F.A., “Identification and Classification of mixed phytoplankton assemblages using AVIRIS image derived spectra” Summaries of the VIII JPL Airborne Earth Science Workshop. (1999), 339–347

    Google Scholar 

  5. Parra L, Spence C., Sadja P, Ziehe A., Müller K-R, “Unmixing Hypersepectral Data”Proc. Advances in Neural Information Processing System 12, Proc. Of the 1999 Conference, MIT Press (1999) 942–948

    Google Scholar 

  6. Kohonen, T., Self-Organizing Maps (2nd ed.), Springer Series in Information Science. (1997)

    Google Scholar 

  7. Bruske, J and Merényi, E.: “Estimating the Intrinsic Dimensionality of Hyperspectral Images”. Proc. European Symposium on Artificial Neural Network, ESANN’99, Bruges, Belgium, (1999), 105–110.

    Google Scholar 

  8. Taudjin S and Landgrebe D., Classification of High Dimensional Data with Limited Training Samples, Doctoral Thesis, School of Elelectrical Engineering and Computer Science, Purdue University. (1998).

    Google Scholar 

  9. Martínez P., Pérez R.M., Aguilar P.L., Bachiller, P. and Diaz, P., “A Neuronal Tool for AVIRIS Hyperspectral Unmixing”, Summaries of the VIII JPL Airborne Earth Science Workshop, JPL/NASA, (1999), 281–286.

    Google Scholar 

  10. Aguilar, P.L., Pérez, R.M., Martínez, P., Bachiller, P., Merchán, A., “Spectra Evaluation and Recognition in the Mixture Problem Using SOFM Algorithm”, Proc. International Symposium on Engineering of Intelligent Systems, (EIS’98), Vol. 2, (1998), 118–124.

    Google Scholar 

  11. Aguilar, P.L., Plaza, A., Martínez, P., Pérez, R.M., “Endmember Extraction by a Self-Organizing Neural Network on Hyperspectral Images”, Proc. International Conference on Automation, Robotics and Computer Vision, Nanyang Technological Institute, Singapore, (2000).

    Google Scholar 

  12. Aguilar P.L, Martínez, P., Pérez R.M., Hormigo, A., “Abundance Extractions from AVIRIS Images Using a Self Organizing Neural Network”, Summaries of the IX JPL Airborne Earth Science Workshop, JPL/NASA (2000), 281–286,.

    Google Scholar 

  13. Aguilar P.L., “Cuantificación de Firmas Hiperespectrales Usando Mapas Autoorganizativos”, Ph. D. Thesis, Escuela Politécnica, Universidad de Extremadura, (Chapter 5), 2000.

    Google Scholar 

  14. Chuvieco E., Elementos de Teledetección Espacial, Ed Rialp (2000)

    Google Scholar 

  15. Ultsch, A. and Siemon, H.P., “Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis”, Proc. ICNN’90 International Neural Network Conference, (1990), 305–308.

    Google Scholar 

  16. Antonille, S. and Gualtieri, J.A., “Visualizing Clusters in High-Dimensional Data with a Kohonen Self Organizing Map”. Summaries of the IX JPL Airborne Earth Science Workshop, JPL/NASA (2000) 281–286.

    Google Scholar 

  17. Martínez, P, Gualtieri, J.A., Aguilar, P.L., Pérez R, Linaje M, Preciado J.C., Plaza A., “Hyperspectral image classification using self-organizing map”, Summaries of the X JPL Airborne Earth Science Workshop, in press, JPL/NASA, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinez, P., Aguilar, P.L., Pérez, R.M., Linaje, M., Preciado, J.C., Plaza, A. (2001). Self-Organizing Map for Hyperspectral Image Analysis. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45723-2_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42237-2

  • Online ISBN: 978-3-540-45723-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics