Abstract
In this paper we present a neural network methodology used for classifying an hyperspectral image referencied as Indian Pines. The network parameters (learning and neighborhood function) are adjusted using a test battery generated from the image, selecting the values that give the best robutness and discrimination capacity. The availity of ground truth allows us to intriduce a new stadistical measure to quantify the resulting classification accuracy. The results of this methodology show an accuracy of 80% in the classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greeen, R.O., Editor, AVIRIS Earth Science Workshop Proceedings, 1988-2000. Available at http://makalu.jpl.nasa.gov/
Ifarraguerri, A.; Chang, C.-I. “Multispectral and Hyperspectral Image Analysis with Convex Cones”. IEEE Trans. Geoscience and Remote Sensing, Vol. 37 Issue 2 Part 1, March 1999, 756–770.
Jimenez, L.O., Morales-Morell, A., Creus, A., “Classification of Hyperdimensional Data Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority Voting, and Neural Networks”, IEEE Trans. Geoscience and Remote Sensing, Vol. 37 Issue 3 Part 1, May 1999,. 1360–1366.
Richardson L and Kruse F.A., “Identification and Classification of mixed phytoplankton assemblages using AVIRIS image derived spectra” Summaries of the VIII JPL Airborne Earth Science Workshop. (1999), 339–347
Parra L, Spence C., Sadja P, Ziehe A., Müller K-R, “Unmixing Hypersepectral Data”Proc. Advances in Neural Information Processing System 12, Proc. Of the 1999 Conference, MIT Press (1999) 942–948
Kohonen, T., Self-Organizing Maps (2nd ed.), Springer Series in Information Science. (1997)
Bruske, J and Merényi, E.: “Estimating the Intrinsic Dimensionality of Hyperspectral Images”. Proc. European Symposium on Artificial Neural Network, ESANN’99, Bruges, Belgium, (1999), 105–110.
Taudjin S and Landgrebe D., Classification of High Dimensional Data with Limited Training Samples, Doctoral Thesis, School of Elelectrical Engineering and Computer Science, Purdue University. (1998).
Martínez P., Pérez R.M., Aguilar P.L., Bachiller, P. and Diaz, P., “A Neuronal Tool for AVIRIS Hyperspectral Unmixing”, Summaries of the VIII JPL Airborne Earth Science Workshop, JPL/NASA, (1999), 281–286.
Aguilar, P.L., Pérez, R.M., Martínez, P., Bachiller, P., Merchán, A., “Spectra Evaluation and Recognition in the Mixture Problem Using SOFM Algorithm”, Proc. International Symposium on Engineering of Intelligent Systems, (EIS’98), Vol. 2, (1998), 118–124.
Aguilar, P.L., Plaza, A., Martínez, P., Pérez, R.M., “Endmember Extraction by a Self-Organizing Neural Network on Hyperspectral Images”, Proc. International Conference on Automation, Robotics and Computer Vision, Nanyang Technological Institute, Singapore, (2000).
Aguilar P.L, Martínez, P., Pérez R.M., Hormigo, A., “Abundance Extractions from AVIRIS Images Using a Self Organizing Neural Network”, Summaries of the IX JPL Airborne Earth Science Workshop, JPL/NASA (2000), 281–286,.
Aguilar P.L., “Cuantificación de Firmas Hiperespectrales Usando Mapas Autoorganizativos”, Ph. D. Thesis, Escuela Politécnica, Universidad de Extremadura, (Chapter 5), 2000.
Chuvieco E., Elementos de Teledetección Espacial, Ed Rialp (2000)
Ultsch, A. and Siemon, H.P., “Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis”, Proc. ICNN’90 International Neural Network Conference, (1990), 305–308.
Antonille, S. and Gualtieri, J.A., “Visualizing Clusters in High-Dimensional Data with a Kohonen Self Organizing Map”. Summaries of the IX JPL Airborne Earth Science Workshop, JPL/NASA (2000) 281–286.
Martínez, P, Gualtieri, J.A., Aguilar, P.L., Pérez R, Linaje M, Preciado J.C., Plaza A., “Hyperspectral image classification using self-organizing map”, Summaries of the X JPL Airborne Earth Science Workshop, in press, JPL/NASA, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martinez, P., Aguilar, P.L., Pérez, R.M., Linaje, M., Preciado, J.C., Plaza, A. (2001). Self-Organizing Map for Hyperspectral Image Analysis. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_25
Download citation
DOI: https://doi.org/10.1007/3-540-45723-2_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42237-2
Online ISBN: 978-3-540-45723-7
eBook Packages: Springer Book Archive