Abstract
The design of models efficiently predicting the performance of a particular genetic algorithm on a given fitness landscape is a very important issue of practical interest. Virtual Genetic Algorithms (VGAs) constitute a statistical approach aimed at this objective. This work describes different improvements to the standard VGA model. These improvements are based on the use of a more representativ e dataset for the statistical analysis, the partitioning of this dataset into separate prediction models, and the utilization of a more sophisticated statistical model to grasp the distribution of fitnesses. The empirical evaluation of this enhanced model shows a more accurate fitness prediction. Furthermore, fast qualitative assessment of parameter changes is shown to be possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Th. Bäck. Optimal mutation rates in genetic search. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 2–8, San Mateo, CA, 1993. Morgan Kaufmann.
C. Cotta and J. M. Troya. Genetic forma recombination in permutation owshop problems. Evolutionary Computation, 6 (1):25–44, 1998.
A. E. Eiben and Th. Bäck. Empirical investigation of multiparent recombination operators in evolution strategies. Evolutionary Computation, 5(3):347–365, 1997.
D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6:333–362, 1992.
J. J. Grefenstette. Predictive m odels using _tness distributions of genetic operators. In L. D. Whitley and M. D. Vose, editors, Foundations of Genetic Algorithms III, pages 139–161, San Mateo, CA, 1995. Morgan Kaufmann.
J. J. Grefenstette. Virtual genetic algorithms: First results. Technical Report AIC-95-013, Navy Center for Applied Research in Artificial Intelligence, 1995.
Kh. Rasheed. Guided crossover: A new operator for genetic algorithm based optimization. In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1535–1541, Washington D.C., 1999. IEEE NCC-EP Society-IEE.
I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog Verlag, Stuttgart, 1994.
H. J. Sussmann. From the brachystochrone to the maximum principle. In Proceedings of the 35th IEEE Conference on Decision and Control, pages 1588–1594, New York NY, 1996. IEEE Publications.
C.-F Tsai, C. G. D. Bowerman, J. I. Tait, and C. Bradford. A fuzzy Taguchi controller to improve genetic algorithm parameter selection. In G. D. Smith, N. C. Steele, and R. F. Albrecht, editors, Artificial Neural Nets and Genetic Algorithms 3, pages 175–178, Wien New York, 1998. Springer-Verlag.
D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nogueras, R., Cotta, C. (2001). Using Statistical Techniques to Predict GA Performance. In: Mira, J., Prieto, A. (eds) Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. IWANN 2001. Lecture Notes in Computer Science, vol 2084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45720-8_85
Download citation
DOI: https://doi.org/10.1007/3-540-45720-8_85
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42235-8
Online ISBN: 978-3-540-45720-6
eBook Packages: Springer Book Archive