Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Statistical Techniques to Predict GA Performance

  • Conference paper
  • First Online:
Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2084))

Included in the following conference series:

  • 1441 Accesses

Abstract

The design of models efficiently predicting the performance of a particular genetic algorithm on a given fitness landscape is a very important issue of practical interest. Virtual Genetic Algorithms (VGAs) constitute a statistical approach aimed at this objective. This work describes different improvements to the standard VGA model. These improvements are based on the use of a more representativ e dataset for the statistical analysis, the partitioning of this dataset into separate prediction models, and the utilization of a more sophisticated statistical model to grasp the distribution of fitnesses. The empirical evaluation of this enhanced model shows a more accurate fitness prediction. Furthermore, fast qualitative assessment of parameter changes is shown to be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Th. Bäck. Optimal mutation rates in genetic search. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 2–8, San Mateo, CA, 1993. Morgan Kaufmann.

    Google Scholar 

  2. C. Cotta and J. M. Troya. Genetic forma recombination in permutation owshop problems. Evolutionary Computation, 6 (1):25–44, 1998.

    Article  Google Scholar 

  3. A. E. Eiben and Th. Bäck. Empirical investigation of multiparent recombination operators in evolution strategies. Evolutionary Computation, 5(3):347–365, 1997.

    Article  Google Scholar 

  4. D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6:333–362, 1992.

    MATH  Google Scholar 

  5. J. J. Grefenstette. Predictive m odels using _tness distributions of genetic operators. In L. D. Whitley and M. D. Vose, editors, Foundations of Genetic Algorithms III, pages 139–161, San Mateo, CA, 1995. Morgan Kaufmann.

    Google Scholar 

  6. J. J. Grefenstette. Virtual genetic algorithms: First results. Technical Report AIC-95-013, Navy Center for Applied Research in Artificial Intelligence, 1995.

    Google Scholar 

  7. Kh. Rasheed. Guided crossover: A new operator for genetic algorithm based optimization. In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1535–1541, Washington D.C., 1999. IEEE NCC-EP Society-IEE.

    Google Scholar 

  8. I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog Verlag, Stuttgart, 1994.

    Google Scholar 

  9. H. J. Sussmann. From the brachystochrone to the maximum principle. In Proceedings of the 35th IEEE Conference on Decision and Control, pages 1588–1594, New York NY, 1996. IEEE Publications.

    Google Scholar 

  10. C.-F Tsai, C. G. D. Bowerman, J. I. Tait, and C. Bradford. A fuzzy Taguchi controller to improve genetic algorithm parameter selection. In G. D. Smith, N. C. Steele, and R. F. Albrecht, editors, Artificial Neural Nets and Genetic Algorithms 3, pages 175–178, Wien New York, 1998. Springer-Verlag.

    Google Scholar 

  11. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nogueras, R., Cotta, C. (2001). Using Statistical Techniques to Predict GA Performance. In: Mira, J., Prieto, A. (eds) Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. IWANN 2001. Lecture Notes in Computer Science, vol 2084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45720-8_85

Download citation

  • DOI: https://doi.org/10.1007/3-540-45720-8_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42235-8

  • Online ISBN: 978-3-540-45720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics