Nothing Special   »   [go: up one dir, main page]

Skip to main content

A General Theorem Prover for Quantified Modal Logics

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2381))

Abstract

The main contribution of this work is twofold. It presents a modular tableau calculus, in the free-variable style, treating the main domain variants of quantified modal logic and dealing with languages where rigid and non-rigid designation can coexist. The calculus uses, to this end, light and simple semantical annotations. Such a general proof-system results from the fusion into a unified framework of two calculi previously defined by the second and third authors. Moreover, the work presents a theorem prover, called GQML-Prover, based on such a calculus, which is accessible in the Internet. The fair deterministic proof-search strategy used by the prover is described and illustrated via a meaningful example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Beckert and R. Goré. Free variable tableaux for propositional modal logics. In Proc. of TABLEAUX’97, pages 91–106. Springer, 1997.

    Google Scholar 

  2. S. Cerrito and M. Cialdea Mayer. Free-variable tableaux for constant-domain quantified modal logic with rigid and non-rigid designation. In First Int. Joint Conf. on Automated Reasoning (IJCAR 2001), pages 137–151. Springer, 2001.

    Google Scholar 

  3. M. Cialdea Mayer and S. Cerrito. Variants of first-order modal logics. In Proc. of TABLEAUX 2000, pages 175–189. Springer, 2000.

    Google Scholar 

  4. M. Cialdea Mayer and S. Cerrito. Ground and free-variable tableaux for variants of quantified modal logics. Studia Logica, 69:97–131, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence, 124:87–138, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.

    Google Scholar 

  7. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.

    Google Scholar 

  8. M. Fitting and R Mendelsohn. First-Order Modal Logic. Kluwer, 1998.

    Google Scholar 

  9. R. Goré. Automated reasoning project. Technical report, TR-ARP-15-95, 1997.

    Google Scholar 

  10. R. Hähnle and P. H. Schmitt. The liberalized δ-rule in free variable semantic tableaux. Journal of Automated Reasoning, 13:211–222, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  11. U. Hustadt and R. A. Schmidt. Simplification and backjumping in modal tableau. In Proc. of TABLEAUX’98, pages 187–201. Springer, 1998.

    Google Scholar 

  12. Jens Otten. ileanTAP: An intuitionistic theorem prover. In Proc. of TABLEAUX’97, pages 307–312. Springer, 1997.

    Google Scholar 

  13. J. Posegga and P. Schmitt. Implementing semantic tableaux. In M. D’Agostino, G. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of tableau method, pages 581–629. Kluwer, 1999.

    Google Scholar 

  14. V. Thion. A strategy for free variable tableaux for variant of quantified modal logics. Technical report, L.R.I., 2002. http://www.lri.fr/~thion.

  15. L. A. Wallen. Automated Deduction in Nonclassical Logics: Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thion, V., Cerrito, S., Mayer, M.C. (2002). A General Theorem Prover for Quantified Modal Logics. In: Egly, U., Fermüller, C.G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2002. Lecture Notes in Computer Science(), vol 2381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45616-3_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45616-3_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43929-5

  • Online ISBN: 978-3-540-45616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics