Abstract
This paper examines two techniques for setting the parameters of an evolutionary Algorithm (EA). The example EA used for test purposes undertakes a simple scheduling problem. An initial version of the EA was tested utilising a set of parameters that were decided by basic experimentation. Two subsequent versions were compared with the initial version, the first of these adjusted the parameters at run time, the second used a set of parameters decided on by running a meta-EA. The authors have been able to conclude that the usage of a meta-EA allows an efficient set of parameters to be derived for the problem EA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Production Scheduling and Rescheduling with genetic algorithms. Bierwirth C, Mattfeld D. Evolutionary Computation volume 7, No 1. MIT Press 1999.
Co-Evolving Draughts Strategies with Differential Evolution, Chap 9 pp 147–158 in NewIdeas in Optimiszation, Corne D, Dorigo M, Glover F Eds. McGraw-Hill 1999.
Building and Optimising a Scheduling GA. BSc Honours dissertation. Urquhart, N Chisholm, K. (supervisor). Napier University, Edinburgh 1998.
Machine Learning Using a Genetic Algorithm to Optimise a Draughts Program Board Evaluation Function. Chisholm K.J, Bradbeer P.V.G.. Proceedings of IEEE ICEC’97, Indianapolis, USA, 1997.
An introduction to Genetic Algorithms, Mitchell, M. MIT press 1996.
Extensions to a Memetic Timetabling System. Paechter B, Norman M, Luchian H. Practice and theory of Automated Timetabling, Burke and Ross Eds. Springer Verlag 1996.
Evolutionary Computation, Fogel D B. IEEE Press 1995.
Specialised Recombinative Operators for Timetabling Problems, Burke E, Elliman D, Weare R. Proceeding of Evolutionary Computing AISB Workshop Sheffield UK April 1995 ed Fogarty, T. Springer-Verlag 1995.
Optimising a Presentation Timetable Using Evolutionary Algorithms. Paechter B. Lecture Notes In Computer Science No 864, Springer-Verlag 1994.
Two solutions to the General Timetable Problem Using Evolutionary Methods, Paechter B, Cumming A, Luchian H, Petriuc, M. Proceedings of the IEEE World Congress on Computational Intelligence, June 1994.
A Case for Lamarckian Evolution, Ackley D H, Littman M L. Artificial Life III, Langton C ed. Addison-Wesley 1994.
Genetic Algorithms in Search Optimisation and Machine Learning, Goldberg D. Addison-Wesley 1989.
Adapting Operator Probabilities in Genetic Algorithms, Davis L. Proceedings of the third International Conference on Genetic Algorithms. Schaffer J. ed. Morgan Kaufmann 1989.
Optimisation & Control Parameters for Genetic Algorithms, Grefenstette J. IEEE Transactions on Systems, Man and Cybernetics 1986.
Fast Practical Evolutionary Timetabling. Corne D, Ross P, Fang H.. Lecture Notes In Computer Science No 864, Springer-Verlag 1994.
Adapting operator settings in Genetic Algorithms. Tuson A, Ross P. Evolutionary Computation Vol 6 No2. Massachusetts Institute of Technology.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Urquhart, N., Chisholm, K., Paechter, B. (2000). Optimising an Evolutionary Algorithm for Scheduling. In: Cagnoni, S. (eds) Real-World Applications of Evolutionary Computing. EvoWorkshops 2000. Lecture Notes in Computer Science, vol 1803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45561-2_30
Download citation
DOI: https://doi.org/10.1007/3-540-45561-2_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67353-8
Online ISBN: 978-3-540-45561-5
eBook Packages: Springer Book Archive