Abstract
In this paper, we propose a simplified pollution adaptive mesh generation algorithm, which concentrate on the boundary node based on the element pollution error indicator. The automatic mesh generation method is followed by either a node-relocation or a node-insertion method. The boundary node relocation phase is introduced to reduce pollution error estimates without increasing the boundary nodes. The node insertion phase greatly improves the error and the factor with the cost of increasing the node numbers. It is shown that the suggested r-h version algorithm converges more quickly than the conventional one.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
I. Babŭska, T. Strouboulis, A. Mathur and C. S. Upadhyay, “Pollution error in the h-version of the finite element method and the local quality of a-posteriori error estimates”, Finite Elements Anal. Des.,17,273–321(1994)
I. Babŭska, T. Strouboulis, C. S. Upadhyay and S. K. Gangaraj, “A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method”, Int. J. Numer. Method Engrg., 38, 4207–4235(1995)
I. Babŭska, T. Strouboulis, S. K. Gangaraj, “Practical aspects of a-posteriori estimation and adaptive control of the pollution error for reliable finite element analysis”, http://yoyodyne.tamu.edu/research/pollution/index.html(1996)
I. Babŭska, T. Strouboulis, S. K. Gangaraj and C. S. Upadhyay, “Pollution error in the h-version of the finite element method and the local quality of the recovered derivatives”, Comput. Methods Appl. Mech. Engrg.,140,1–37(1997)
O. C. Zienkiewicz, and J. Z. Zhu, “The Superconvergent Patch Recovery and a posteriori estimators. Part1. The recovery techniques”, Int. Numer. Methods Engrg.,33,1331–1364(1992)
O. C. Zienkiewicz, and J. Z. Zhu, “The Superconvergent Patch Recovery and a posteriori estimators. Part2. Error estimates and adaptivity”, Int. J. Numer. Methods Engrg.,33,1365–1382(1992)
O. C. Zienkiewicz, and J. Z. Zhu, “The Superconvergent Patch Recovery(SPR) and adaptive finite element refinement”, Comput. Methods Appl. Mech. Engrg.,101,207–224(1992)
O. C. Zienkiewicz, J. Z. Zhu and J. Wu, “Superconvergent Patch Recovery techniques-Some further tests”, Comm. Numer. Methods Engrg., Vol. 9,251–258(1993)
B. Kaan Karamete, User manual of 2D Constrained Mesh Generation Mesh2d. http://scorec.rpi.edu/~kaan/mesh2d.tar
B. K. Karamete, T. Tokdemir and M. Ger, “Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming”, Int. J. Numer. Methods Engrg., 40,251–268(1997)
I. Babŭska, T. Strouboulis, and S. K. Gangaraj, “A posteriori estimation of the error in the recovered derivatives of the finite element solution”, Comput. Methods Appl. Mech. Engrg.,150,369–396(1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pyun, S.B., Yoo, H.S. (2001). A Pollution Adaptive Mesh Generation Algorithm in r-h Version of the Finite Element Method. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds) Computational Science — ICCS 2001. ICCS 2001. Lecture Notes in Computer Science, vol 2073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45545-0_105
Download citation
DOI: https://doi.org/10.1007/3-540-45545-0_105
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42232-7
Online ISBN: 978-3-540-45545-5
eBook Packages: Springer Book Archive