Nothing Special   »   [go: up one dir, main page]

Skip to main content

Performance Guarantees of Local Search for Multiprocessor Scheduling

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2081))

Abstract

This paper deals with the worst-case performance of local search algorithms for makespan minimization on parallel machines. We analyze the quality of the local optima obtained by iterative improvements over the jump, the swap, and the newly defined push neighborhood.

Supported by the project “High performance methods for mathematical optimization” of the Netherlands Organization for Scientific Research (NWO)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics for some scheduling problems I. Discrete Applied Mathematics, 65:97–122, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics for some scheduling problems II. Discrete Applied Mathematics, 72:47–69, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9:511–522, 1980.

    Article  MathSciNet  Google Scholar 

  4. U. Feige, M. Karpinski, and M. Langberg. Improved approximation of MAX-CUT on graphs of bounded degree. Technical Report 85215 CS, Institut för Informatik, Universität Bonn, 2000.

    Google Scholar 

  5. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  6. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  8. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems: theoretical and practical results. Journal of the ACM, 34:144–162, 1987.

    Article  MathSciNet  Google Scholar 

  9. D.S. Hochbaum and D.B. Shmoys. A polynomial approximation scheme for machine scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing, 17:539–551, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  10. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49:291–307, 1970.

    Google Scholar 

  11. M.R. Korupolu, C.G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for facility location problems. Technical Report 98-30, DIMACS, 1998.

    Google Scholar 

  12. J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Lin and B.W. Kernighan. An effective heuristic for the traveling salesman problem. Operations Research, 21:489–516, 1973.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuurman, P., Vredeveld, T. (2001). Performance Guarantees of Local Search for Multiprocessor Scheduling. In: Aardal, K., Gerards, B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. Lecture Notes in Computer Science, vol 2081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45535-3_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-45535-3_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42225-9

  • Online ISBN: 978-3-540-45535-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics