Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sorting with a Forklift

  • Conference paper
  • First Online:
Algorithm Theory — SWAT 2002 (SWAT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2368))

Included in the following conference series:

  • 712 Accesses

Abstract

A fork stack is a stack that allows pushes and pops of several items at a time. An algorithm to determine which sequences of input streams can be sorted by a fork stack is given. The minimal unsortable sequences are found (there are a finite number only). The results are extended to fork stacks where there are bounds on how many items can be pushed and popped at one time. Some enumeration results for the number of sortable sequences are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. D. Atkinson: Restricted permutations, Discrete Math. 195 (1999), 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. D. Atkinson: Generalised stack permutations, Combinatorics, Probability and Computing 7 (1998), 239–246.

    Article  MATH  Google Scholar 

  3. P. Flajolet and A. M. Odlyzko: Singularity analysis of generating functions. SIAM Jour. Disc. Math. 2 (1990), 216–240.

    Article  MathSciNet  Google Scholar 

  4. P. Flajolet and R. Sedgwick: The Average Case Analysis of Algorithms, Complex Asymptotics and Generating Functions. INRIA Research Report 2026, 1993.

    Google Scholar 

  5. I. P. Goulden, D. M. Jackson: Combinatorial Enumeration, John Wiley and Sons, New York, 1983.

    MATH  Google Scholar 

  6. D. E. Knuth: Fundamental Algorithms, The Art of Computer Programming Vol. 1 (First Edition), Addison-Wesley, Reading, Mass. (1967).

    Google Scholar 

  7. V. R. Pratt: Computing permutations with double-ended queues, parallel stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5 (1973), 268–277.

    MathSciNet  Google Scholar 

  8. N. J. A. Sloane: The Online Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/, 2002.

  9. R. E. Tarjan: Sorting using networks of queues and stacks, Journal of the ACM 19 (1972), 341–346.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. S. Wilf: generatingfunctionology, Academic Press, New York, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albert, M.H., Atkinson, M.D. (2002). Sorting with a Forklift. In: Penttonen, M., Schmidt, E.M. (eds) Algorithm Theory — SWAT 2002. SWAT 2002. Lecture Notes in Computer Science, vol 2368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45471-3_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45471-3_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43866-3

  • Online ISBN: 978-3-540-45471-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics