Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing the Treewidth and the Minimum Fill-in with the Modular Decomposition

  • Conference paper
  • First Online:
Algorithm Theory — SWAT 2002 (SWAT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2368))

Included in the following conference series:

Abstract

Using the notion of modular decomposition we extend the class of graphs on which both the treewidth and the minimum fill-in problems can be solved in polynomial time. We show that if C is a class of graphs which is modularly decomposable into graphs that have a polynomial number of minimal separators, or graphs formed by adding a matching between two cliques, then both the treewidth and the minimum fill-in problems on C can be solved in polynomial time. For the graphs that are modular decomposable into cycles we give algorithms, that use respectively O(n) and O(n 3) time for treewidth and minimum fill-in.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability-A survey. BIT, 25:2–23, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Babel. Triangulating graphs with few P 4’s. Disc. Appl. Math., 89:45–57, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation graphs. SIAM J. Disc. Math., 8(4):606–616, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs. SIAM J. Disc. Math., 6:181–188, 1993.

    Article  MATH  Google Scholar 

  6. H. L. Bodlaender and U. Rotics. Computing the treewidth and the minimum fill-in with the modular decomposition. Technical Report CS-UU-2001-22, Institute of Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands, 2001. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2001/2001-22.pdf.

    Google Scholar 

  7. V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph. In H. Reidel and S. Tison, editors, Proceedings STACS’00, pages 503–515. Springer Verlag, Lecture Notes in Computer Science, vol. 1770, 2000.

    Google Scholar 

  8. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput., 31:212–232, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Broersma, E. Dahlhaus, and T. Kloks. Algorithms for the treewidth and minimum fill-in of HHD-free graphs. In Proceedings 23nd International Workshop on Graph-Theoretic Concepts in Computer Science WG’97, pages 109–117. Springer Verlag, Lecture Notes in Computer Science, vol. 1335, 1997.

    Chapter  Google Scholar 

  10. H. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill in and treewidth for distance hereditary graphs. Disc. Appl. Math., 99:367–400, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Buer and R. H. Möhring. A fast algorithm for the decomposition of graphs and posets. Mathematics of Operations Research, 8(2):170–184, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Cournier and M. Habib. A new linear algorithm for modular decomposition. In T. Sophie, editor, Trees in algebra and programming, CAAP’94, pages 68–84. Springer Verlag, Lecture Notes in Computer Science, vol. 787, 1994.

    Chapter  Google Scholar 

  13. E. Dahlhaus. Minimum fill-in and treewidth for graphs modularly decomposable into chordal graphs. In Proceedings 24nd International Workshop on Graph-Theoretic Concepts in Computer Science WG’98, pages 351–358. Springer Verlag, Lecture Notes in Computer Science, vol. 1517, 1998.

    Google Scholar 

  14. E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical modular decomposition. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 26–35, 1997.

    Google Scholar 

  15. W. Espelage, F. Gurski, and E. Wanke. Deciding clique-width for graphs of bounded treewidth. In Proceedings WADS 2001, pages 87–98. Springer Verlag, Lecture Notes in Computer Science, vol. 2125, 2001.

    Google Scholar 

  16. T. Kloks. Treewidth of circle graphs. Int. J. Found. Computer Science, 7:111–120, 1996.

    Article  MATH  Google Scholar 

  17. T. Kloks and D. Kratsch. Listing all minimal separators of a graph. SIAM J. Comput., 27(3):605–613, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. M. McConnell and J. Spinrad. Modular decomposition and transitive orientation. Disc. Math., 201:189–241, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. H. Möhring. Graph problems related to gate matrix layout and PLA folding. In E. Mayr, H. Noltemeier, and M. SysFlo, editors, Computational Graph Theory, Comuting Suppl. 7, pages 17–51. Springer Verlag, 1990.

    Google Scholar 

  20. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7:309–322, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Sundaram, K. Sher Singh, and C. Pandu Rangan. Treewidth of circular-arc graphs. SIAM J. Disc. Math., 7:647–655, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77–79, 1981.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L., Rotics, U. (2002). Computing the Treewidth and the Minimum Fill-in with the Modular Decomposition. In: Penttonen, M., Schmidt, E.M. (eds) Algorithm Theory — SWAT 2002. SWAT 2002. Lecture Notes in Computer Science, vol 2368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45471-3_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-45471-3_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43866-3

  • Online ISBN: 978-3-540-45471-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics