Abstract
A realizer of a maximal plane graph is a set of three particular spanning trees. It has been used in several graph algorithms and particularly in graph drawing algorithms. We propose colored flips on realizers to generalize Wagner’s theorem on maximal planar graphs to realizers. From this result, it is proved that ξ0 + ξ1 + ξ2 − Δ = n − 1 where ξi is the number of inner nodes in the tree T i, Δ is the number of three colored faces in the realizer and n is the number of vertices. As an application of this formula, we show that orderly spanning trees with at most \( \left\lfloor {\frac{{2n + 1--\Delta }} {3}} \right\rfloor \) leaves can be computed in linear time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
erences
E. Brehm. 3-orientations and Schnyder 3-tree-decompositions. PhD thesis, FB Mathematik und Informatik, Freie Universität Berlin, 2000.
Yi-Ting Chiang Ching-Chi and Hsueh-I Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proc. 12th Symp. Discrete Algorithms, pages 506–515. ACM and SIAM, 2001.
Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In Proc. 25th International Colloquium on Automata, Languages, and Programming (ICALP’98), volume 1443, pages 118–129, 1998.
P. Ossona de Mendez. Orientations bipolaires. PhD thesis, Ecole des Hautes Etudes en Sciences Sociales, 1994.
A. K. Dewdney. Wagner’s theorem for torus graphs. Discrete Math., 4:139–149, 1973.
S. Eliahou. Signed diagonal flips and the four color theorem. Europ. J. Combinatorics, 20:641–646, 1999.
S. Eliahou, S. Gravier, and C. Payan. Three moves on signed surface triangulations. Les cahiers du laboratoire leibniz, 2000.
I. Fary. On straight lines representation of planar graphs. Acta Sci. Math. Szeged, 11:229–233, 1948.
H. De Frayseix, J. Pach, and J. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.
S. Gravier and C. Payan. Flips signés et triangulations d’un polygone. Les cahiers du laboratoire leibniz, 2000.
G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4–32, 1996.
P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1:343–353, 1986.
W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.
W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Symp. Discrete Algorithms, pages 138–148, 1990.
S.K. Stein. Convex maps. In Proc. Amer. Math. Soc., volume 2, pages 464–466, 1951.
K. Wagner. Bemerkungen zum Vierfarbenproblem. In Jahresber. Deutsche Math.-Verein., volume 46, pages 26–32, 1936.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonichon, N., Le Saëc, B., Mosbah, M. (2002). Wagner’s Theorem on Realizers. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_89
Download citation
DOI: https://doi.org/10.1007/3-540-45465-9_89
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43864-9
Online ISBN: 978-3-540-45465-6
eBook Packages: Springer Book Archive