Nothing Special   »   [go: up one dir, main page]

Skip to main content

Integral Points on Punctured Abelian Surfaces

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

Abstract

We study the density of integral points on punctured abelian surfaces. Linear growth rates are observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bogomolov, F.A., Tschinkel, Yu.: Density of rational points on elliptic K3 surfaces. Asian J. Math. 4 (2000) 351–368

    MATH  MathSciNet  Google Scholar 

  2. Cantor, D.G.: On the analogue of the division polynomials for hyperelliptic curves. J. Reine Angew. Math. 447 (1994) 91–145

    MATH  MathSciNet  Google Scholar 

  3. Flynn, E.V.: Descent via isogeny in dimension 2. Acta Arith. 66 (1994) 23–43

    MATH  MathSciNet  Google Scholar 

  4. Gordon, D.M., Grant, D.: Computing the Mordell-Weil rank of Jacobians of curves of genus two. Trans. Amer. Math. Soc. 337 (1993) 807–824

    Article  MATH  MathSciNet  Google Scholar 

  5. Gupta, R., Murty, M.R.: Cyclicity and generation of points mod p on elliptic curves. Invent. Math. 101 (1990) 225–235

    Article  MATH  MathSciNet  Google Scholar 

  6. Harris, J., Tschinkel, Yu.: Rational points on quartics. Duke Math. J. 104 (2000) 477–500

    Article  MATH  MathSciNet  Google Scholar 

  7. Hassett, B., Tschinkel, Yu.: Density of integral points on algebraic varieties. In: Peyre, E., Tschinkel, Yu. (eds.): Rational Points on Algebraic Varieties. Progr. Math., Vol. 199. Birkhäuser, Basel (2001) 169–197

    Google Scholar 

  8. Lang, S., Trotter, H.: Primitive points on elliptic curves. Bull. Amer. Math. Soc. 83 (1977) 289–292

    Article  MATH  MathSciNet  Google Scholar 

  9. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972) 259–331

    Article  MATH  MathSciNet  Google Scholar 

  10. Vojta, P.: Diophantine approximation and value distribution theory. Lecture Notes in Math., Vol. 1239. Springer-Verlag, Berlin (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kresch, A., Tschinkel, Y. (2002). Integral Points on Punctured Abelian Surfaces. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics