Abstract
We study the density of integral points on punctured abelian surfaces. Linear growth rates are observed experimentally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bogomolov, F.A., Tschinkel, Yu.: Density of rational points on elliptic K3 surfaces. Asian J. Math. 4 (2000) 351–368
Cantor, D.G.: On the analogue of the division polynomials for hyperelliptic curves. J. Reine Angew. Math. 447 (1994) 91–145
Flynn, E.V.: Descent via isogeny in dimension 2. Acta Arith. 66 (1994) 23–43
Gordon, D.M., Grant, D.: Computing the Mordell-Weil rank of Jacobians of curves of genus two. Trans. Amer. Math. Soc. 337 (1993) 807–824
Gupta, R., Murty, M.R.: Cyclicity and generation of points mod p on elliptic curves. Invent. Math. 101 (1990) 225–235
Harris, J., Tschinkel, Yu.: Rational points on quartics. Duke Math. J. 104 (2000) 477–500
Hassett, B., Tschinkel, Yu.: Density of integral points on algebraic varieties. In: Peyre, E., Tschinkel, Yu. (eds.): Rational Points on Algebraic Varieties. Progr. Math., Vol. 199. Birkhäuser, Basel (2001) 169–197
Lang, S., Trotter, H.: Primitive points on elliptic curves. Bull. Amer. Math. Soc. 83 (1977) 289–292
Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972) 259–331
Vojta, P.: Diophantine approximation and value distribution theory. Lecture Notes in Math., Vol. 1239. Springer-Verlag, Berlin (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kresch, A., Tschinkel, Y. (2002). Integral Points on Punctured Abelian Surfaces. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_16
Download citation
DOI: https://doi.org/10.1007/3-540-45455-1_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43863-2
Online ISBN: 978-3-540-45455-7
eBook Packages: Springer Book Archive