Abstract
Focusing on servers that process many signatures or ciphertexts, this paper proposes two techniques for parallel computing with SIMD, which significantly enhances the speed of elliptic curve scalar multiplication. We also evaluate one of them based on a real implementation on a Pentium III, which incorporates the SIMD architecture. The results show that the proposed method is about 4.4 times faster than the conventional method.
This work was done while the author was in NTT Information Sharing Platform Laboratories.
NTT Communications
NTT Information Sharing Platform Laboratories, NTT Corporation
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Lenstra, A.K., Verheu, E.R.: Selecting cryptographic key sizes. In Imai, H., Zheng, Y., eds.: Public Key Cryptography-Third International Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2000. Volume 1751 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (2000) 446–465
Miller, V.S.: Use of elliptic curves in cryptography. In Williams, H.C., ed.: Advances in Cryptology — CRYPTO’85. Volume 218 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (1986) 417–426
Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987) 203–209
Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In Ohta, K., Pei, D., eds.: Advances in Cryptology — ASIACRYPT’98. Volume 1514 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (1998) 51–65
Lopez, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in gf(2n). In Tavares, S., Meijer, H., eds.: Selected Areas in Cryptography — 5th Annual International Workshop, SAC’98. Volume 1556 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York, Springer-Verlag (1999) 210–212
Woodbury, A., Bailey, D., Paar, C.: Elliptic curve cryptography on smart cards without coprocessors. In: the Fourth Smart Card Research and Advanced Applications (CARDIS 2000) Conference. CADIS’2000, Bristol, UK (2000)
Koyama, K., Tsuruoka, Y.: Speeding up elliptic curve cryptosystems by using a signed binary windows method. In Brickell, E.F., ed.: Advances in Cryptology — CRYPTO’92. Volume 740 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (1993) 345–357
Smart, N.P.: The hessian form of an elliptic curve. In: Preproceedings of Cryptographic Hardware and Embedded Systems. CHES2001 (2001) 121–128
Lipmaa, H.: Idea: A cipher for multimedia architectures? In Tavares, S., Meijer, H., eds.: Selected Areas in Cryptography-5th Annual International Workshop, SAC’98. Volume 1556 of Lecture Notes in Computer Science., Berlin, Heidelberg, New York, Springer-Verlag (1999) 248–263
Dixon, B., Lenstra, A.K.: Factoring integers using simd sieves. In Helleseth, T., ed.: Advances in Cryptology — EUROCRYPT’93. Volume 765 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (1993) 28–39
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC Press (1997)
Biham, E.: A fast new des implementation in sofware. In Biham, E., ed.: Fast Software Encryption-4th International Workshop, FSE’97. Volume 1267 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (1997) 260–272
Nakajima, J., Matsui, M.: Fast software implementations of misty1 on alpha processors. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences (Japan) E82-A (1999) 107–116
NIST: Recommended elliptic curves for federal government use (1999) (available at http://csrc.nist.gov/csrc/fedstandards.html ).
Knuth, D.E.: Seminumerical Algorithms. Third edn. Volume 2 of The Art of Computer Programming. Addison Wesley (1997)
Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in gf(2m) using normal bases. In: Information and Computation. Volume 78. (1988) 171–177
Schroeppel, R., Orman, H., O’Malley, S., Sparscheck, O.: Fast key exchange with ellipic curve systems. In Coppersmith, D., ed.: Advances in Cryptology — CRYPTO’95. Volume 963 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (1995) 43–56
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aoki, K., Hoshino, F., Kobayashi, T., Oguro, H. (2001). Elliptic Curve Arithmetic Using SIMD. In: Davida, G.I., Frankel, Y. (eds) Information Security. ISC 2001. Lecture Notes in Computer Science, vol 2200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45439-X_16
Download citation
DOI: https://doi.org/10.1007/3-540-45439-X_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42662-2
Online ISBN: 978-3-540-45439-7
eBook Packages: Springer Book Archive