Nothing Special   »   [go: up one dir, main page]

Skip to main content

A SOM/ARSOM Hierarchy for the Description of Dynamic Scenes

  • Conference paper
  • First Online:
AI*IA 2001: Advances in Artificial Intelligence (AI*IA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2175))

Included in the following conference series:

Abstract

A neural architecture is presented, aimed to describe the dynamic evolution of complex structures inside a video sequence. The proposed system is arranged as a tree of self-organizing maps. Leaf nodes are implemented by ARSOM networks as a way to code dynamic inputs, while classical SOM’s are used to implement the upper levels of the hierarchy. Depending on the application domain, inputs are made by suitable low level features extracted frame by frame of the sequence. Theoretical foundations of the architecture are reported along with a detailed outline of its structure, and encouraging experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Chella, M. Frixione, and S. Gaglio. A Cognitive Architecture for Artificial Vision. Artificial Intelligence, 89:73–111, 1997.

    Article  MATH  Google Scholar 

  2. P. Frasconi, M. Gori, and A. Sperduti. A General Framework for Adaptive Processing of Data Structures. IEEE Trans. on Neural Networks, 9(5):768–786, September 1998.

    Article  Google Scholar 

  3. M. Hermann, R. Der, and G. Balzuweit. Hierarchical Feature Maps and Nonlinear Component Analysis. In Proc. of ICNN’96, volume 2, pages 1390–1394, Texas, 1996.

    Google Scholar 

  4. T. Kohonen. The Self-Organizing Map. Proceedings of the IEEE, 78(9):1464–1480, September 1990.

    Article  Google Scholar 

  5. T. Kohonen, S. Kaski, K. Lagus, and T. Honkela. Very Large Two-Level SOM for the Browsing of Newsgroups. In Proc. of International Conference on Artificial Neural Networks, pages 269–274, Bochum, Germany, 1996.

    Google Scholar 

  6. P. Koikkalainen and E. Oja. Self-Organizing Hierarchical Feature Maps. In Proc. of International Joint Conference on Neural Networks, pages 279–284, San Diego, CA, 1990.

    Google Scholar 

  7. J. Laaksonen, M. Koskela, and E. Oja. PicSOM: Self-Organizing Maps for Content-Based Image Retrieval. In Proc. of International Joint Conference on Neural Networks, Washington D.C., USA, July 1999.

    Google Scholar 

  8. J. Lampinen and E. Oja. Self-Organizing Maps for Spatial and Temporal AR Models. In Proc. of the sixth SCIA Scandinavian Conference on Image Analysis, pages 120–127, Helsinky, Finland, 1990.

    Google Scholar 

  9. J. Lampinen and E. Oja. Clustering Properties of Hierarchical Self-Organizing Maps. J. Math. Imaging Vision, 2(3):261–271, 1992.

    Article  MATH  Google Scholar 

  10. T.C. Lee and M. Peterson. Adaptive Vector Quantization Using a Self-Development Neural Network. IEEE J. Select Areas Commun., 8:1458–1471, 1990.

    Article  Google Scholar 

  11. R. Mugnuolo, P. Magnani, E. Re, and S. Di Pippo. The SPIDER Manipulation System (SMS). The Italian Approach to Space Automation. Robotics and Autonomous Systems, 23(1–2), 1998.

    Google Scholar 

  12. G. Ongun and U. Halici. Fingerprint Classification through Self-Organizing Feature Map Modified to Treat Uncertainty. Proceedings of the IEEE, 84(10):1497–1512, October 1996.

    Article  Google Scholar 

  13. A. Sperduti and A. Starita. Supervised Neural networks for the Classification of Structures. IEEE Trans. on Neural Networks, 8(3):714–735, May 1997.

    Article  Google Scholar 

  14. P. N. Suganthan. Hierarchical Overlapped SOM’s for Pattern Classification. IEEE Trans. on Neural Networks, 10(1):193–196, January 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chella, A., Guarino, M.D., Pirrone, R. (2001). A SOM/ARSOM Hierarchy for the Description of Dynamic Scenes. In: Esposito, F. (eds) AI*IA 2001: Advances in Artificial Intelligence. AI*IA 2001. Lecture Notes in Computer Science(), vol 2175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45411-X_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45411-X_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42601-1

  • Online ISBN: 978-3-540-45411-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics