Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Practical Program of Automated Proving for a Class of Geometric Inequalities

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2061))

Included in the following conference series:

Abstract

An inequality-proving algorithm based on cell decomposition and a practical program written in Maple are presented, which can efficiently treat inequality-type theorems involving radicals, especially, a class of geometric inequalities including most of the theorems in a wellknown book on the subject.

The work is supported in part by NKBRSF-(G1998030602). Lu Yang is concurrently at Guangzhou University, Guangzhou 510405, China.

Acknowledgements

The authors would like to thank the anonymous referees to this paper for their valuable suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bottema, O. Dordevic, R. Z. Janic, R. R. Mitrinovic, D. S. & Vasic, P. M. Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.

    MATH  Google Scholar 

  2. Chou, S. C. Gao, X. S. & Arnon, D. S., On the mechanical proof of geometry theorems involving inequalities, Advances in Computing Research, 6, JAI Press Inc., pp. 139–181, 1992.

    Google Scholar 

  3. Dolzmann, A., Sturm, T. & Weispfenning, V., A new approach for automatic theorem proving in real geometry, Journal of Automated Reasoning, 21(3), 357–380, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. Dolzmann, A. Sturm, T. & Weispfenning, V. Real quantifier elimination in practice, Algorithmic Algebra and Number Theory, B. H. Matzat, G.-M. Greuel & G. Hiss (eds.), Springer-Verlag, Berlin Heidelberg, pp. 221–247, 1998.

    Google Scholar 

  5. Janous, W., Problem 1137, Crux Math., 12, 79, 177, 1986.

    Google Scholar 

  6. Kuang, J. C. Applied Inequalities (in Chinese), 2nd ed., Hunan Educational Publishing House, China, 1993.

    Google Scholar 

  7. Liu, B. Q., A collection of geometric inequalities discovered with BOTTEMA (in Chinese), Research Communications on Inequalities, 31, 2001 (to appear).

    Google Scholar 

  8. McPhee, N. F., Chou, S. C. & Gao, X. S.: Mechanically proving geometry theorems using a combination of Wu’s method and Collins’ method. Proc. CADE-12, LNCS 814, Springer-Verlag, Berlin Heidelberg, pp. 401–415, 1994.

    Google Scholar 

  9. Mitrinovic, D. S., Pecaric, J. E. & Volenec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Boston Dordrecht, 1989.

    MATH  Google Scholar 

  10. Shan, Z. (ed.), Geometric Inequality in China (in Chinese), Jiangsu Educational Publishing House, China, 1996.

    Google Scholar 

  11. Wu W.-t., On a finiteness theorem about problem involving inequalities, Sys. Sci. & Math. Scis., 7, 193–200, 1994.

    MATH  Google Scholar 

  12. Wu W.-t., On global-optimization problems, Proc. ASCM’ 98, Lanzhou University Press, Lanzhou, pp. 135–138, 1998.

    Google Scholar 

  13. Yang, L., Recent advances in automated theorem proving on inequalities, J. Comput. Sci. & Technol., 14(5), 434–446, 1999.

    Article  MATH  Google Scholar 

  14. Yang, L., Hou, X. R. & Xia, B. C., Automated discovering and proving for geometric inequalities, Automated Deduction in Geometry, X. S. Gao, D. Wang & L. Yang (eds.), LNAI 1669, Springer-Verlag, Berlin Heidelberg, pp. 30–46, 1999.

    Chapter  Google Scholar 

  15. Yang, L., Hou, X. R. & Xia, B. C., A complete algorithm for automated discovering of a class of inequality-type theorems, Science in China, Series F 44(1), 33–49, 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, L., Zhang, J. (2001). A Practical Program of Automated Proving for a Class of Geometric Inequalities. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45410-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42598-4

  • Online ISBN: 978-3-540-45410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics