Nothing Special   »   [go: up one dir, main page]

Skip to main content

Segmentation of Tubular Structures in 3D Images Using a Combination of the Hough Transform and a Kalman Filter

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Included in the following conference series:

Abstract

In this paper, we present a new approach for coarse segmentation of tubular anatomical structures in 3D image data. Our approach can be used to initialise complex deformable models and is based on an extension of the randomized Hough transform (RHT), a robust method for low-dimensional parametric object detection. In combination with a discrete Kalman filter, the object is tracked through 3D space. Our extensions to the RHT feature adaptive selection of the sample size, expectation-dependent weighting of the input data, and a novel 3D parameterisation for straight elliptical cylinders. For initialisation, only little user interaction is necessary. Experimental results obtained for 3D synthetic as well as for 3D medical images demonstrate the robustness of our approach w.r.t. image noise. We present the successful segmentation of tubular anatomical structures such as the aortic arc or the spinal chord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679–697, 1986.

    Article  Google Scholar 

  2. W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. John Wiley & Sons, Inc., New York, 3rd edition, 1968.

    MATH  Google Scholar 

  3. M. Hernández-Hoyos, A. Anwander, M. Orkisz, J.-P. Roux, P. Douek and I. E. Magnin. A deformable vessel model with single point initialization for segmentation, quantification and visualization of blood vessels in 3D MRA. In Proc. MICCAI 2000, LNCS 1935, pp. 735–745. Springer-Verlag, 2000.

    Google Scholar 

  4. J. Illingworth and J. Kittler. A survey of the Hough transform. Computer Vision, Graphics and Image Processing, 44(1):87–116, 1988.

    Article  Google Scholar 

  5. R. E. Kalman. A new approach to linear filtering and prediction problems. Trans. ASME, Journal of Basic Engineering, (82):35–45, 1960.

    Google Scholar 

  6. H. Kälviäinen, P. Hirvonen, L. Xu and E. Oja. Comparisons of probabilistic and non-probabilistic Hough transforms. In Proc. 3rd ECCV, LNCS 800, pp. 351–360. Springer-Verlag, 1994.

    Google Scholar 

  7. V. Kyrki and H. Kälviäinen. Combination of local and global line extraction. Real-Time Imaging, 6:79–91, 2000.

    Google Scholar 

  8. V. F. Leavers. Shape Detection in Computer Vision Using the Hough Transform. Springer-Verlag, London, 1992.

    Google Scholar 

  9. V. F. Leavers. Survey: Which Hough transform? Computer Vision, Graphics and Image Processing: Image Understanding, 58(2):250–264, 1993.

    Article  Google Scholar 

  10. T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2):91–108, 1996.

    Article  Google Scholar 

  11. T. O’ Donnell, A. Gupta, and T. Boult. A new model for the recovery of cylindrical structures from medical image data. In Proc. CVRMed-MRCAS’ 97, LNCS 1205, pp. 223–235. Springer-Verlag, 1997.

    Chapter  Google Scholar 

  12. B. I. Soroka, R. L. Anderson, and R.K. Bajcsy. Generalized cylinders from local aggregation of sections. Pattern Recognition, 13(5):353–363, 1981.

    Article  MathSciNet  Google Scholar 

  13. A. J. Walker. An efficient method for generating discrete random variables with general distributions. ACM Trans. on Mathematical Software, 3(3):253–256, 1977.

    Article  MATH  Google Scholar 

  14. O. Wink, W. J. Niessen, and M. A. Viergever. Fast quantification of abdominal aortic aneurysms from CTA volumes. In Proc. MICCAI 1998, LNCS 1496, pp. 138–145. Springer-Verlag, 1998.

    Google Scholar 

  15. L. Xu and E. Oja. Randomized Hough transform (RHT): Basic mechanisms, algorithms, and computational complexities. Computer Vision, Graphics and Image Processing: Image Understanding, 57(2):131–154, 1993.

    Article  Google Scholar 

  16. L. Xu, E. Oja, and P. Kultanen. A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters, 11(5):331–338, 1990.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Behrens, T., Rohr, K., Stiehl, H.S. (2001). Segmentation of Tubular Structures in 3D Images Using a Combination of the Hough Transform and a Kalman Filter. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_54

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics