Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Blocked All-Pairs Shortest-Paths Algorithm

  • Conference paper
  • First Online:
Algorithm Theory - SWAT 2000 (SWAT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1851))

Included in the following conference series:

Abstract

We propose a blocked version of Floyd’s all-pairs shortest-paths algorithm. The blocked algorithm makes better utilization of cache than does Floyd’s original algorithm. Experiments indicate that the blocked algorithm delivers a speedup (relative to the unblocked Floyd’s algorithm) between 1.6 and 1.9 on a Sun Ultra Enterprise 4000/5000 for graphs that have between 480 and 3200 vertices. The measured speedup on an SGI O2 for graphs with between 240 and 1200 vertices is between 1.6 and 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. AbuSufah, D. J. Kuck, and D. H. Lawrie. Automatic program transformation for virtual memory computers. In Proc. of the 1979 National Computer Conference, pages 969–974, New York, 1979.

    Google Scholar 

  2. A. Aggarwal, K. Chandra, and M. Snir. A model for hierarchical memory. In The 19th Annual ACM Symposium on Theory of Computing, pages 305–314, New York, 1987.

    Google Scholar 

  3. A. Aggarwal, K. Chandra, and M. Snir. Hierarchical memory with block transfer. In The 28th Annual IEEE Symposium on Foundations of Computer Science, pages 204–216, LosAngeles, CA, 1987.

    Google Scholar 

  4. A. Aggarwal, M. Horowitz, and Hennessey. An analytical cache model. The ACM Transactions on Computer Systems, 7(2):184–215, 1989.

    Article  Google Scholar 

  5. I. Al-Furaih and S. Ranka, Memory hierarchy management for iterative graph structures. Proc. 12th International Parallel Processing Symposium’ 98. (IPPS98), Orlando, Florida.

    Google Scholar 

  6. I. Al-Furaih and S. Ranka, Ibraheem Al-Furaih and Sanjay Ranka, Practical Algorithms for Internal and External Sorting, Proc. the Second International Conference on Parallel and Distributed Computing and Networks (PDCN’98), Brisbane, Australia, 14–16 December 1998.

    Google Scholar 

  7. B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model of computation. Algorithmica, 12(2–3):72–109, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted variables. In In Proceedings of the ACM SIGPLAN’ 90 Conference on Programming Language Design and Implementation, White Plains, New York, 1990.

    Google Scholar 

  9. D. Gannon and W. Jalby. The influence of memory hierarchy on algorithm organization: Programming FFTs on a vector multiprocessor. In The Characteristics of Parallel Algorithms, MIT Press, Cambridge, 1987.

    Google Scholar 

  10. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1989.

    Google Scholar 

  11. E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms. Computer Science Press, New York, 1998.

    Google Scholar 

  12. M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of blocked algorithms. ACM, 26:63–74, 1991.

    Google Scholar 

  13. A. LaMarca and R. E. Ladner. The influences of caches on the performance of heaps. The ACM Journal of Experimental Algorithms, 1(4), 1996.

    Google Scholar 

  14. A. LaMarca and R. E. Ladner. The influences of caches on the performance of sorting. In The ACM-SIAM Symposium on Discrete Algortihms, pages 370–379, New Orleans, Louisiana, 5–7 January, 1997.

    Google Scholar 

  15. M. Martonosi, A. Gupta, and T. Anderson. Memspy: analyzing memory system bottlenecks in programs. In Proceedings of the 1992 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 1–12, Newport, Rhode Island, 1992.

    Google Scholar 

  16. A. C. McKeller and E. G. Coffman. The organization of matrices and matrix operations in a paged multiprogramming environment. CACM, 12(3):153–165, 1969.

    Google Scholar 

  17. Sun Microsytems. Introduction to Shade. Manual, Sun Microsytems, Mountain View, CA, 1998.

    Google Scholar 

  18. D. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Analysis. Morgan Kaufmann, San Mateo, CA, 1996.

    Google Scholar 

  19. J. P. Singh, H. S. Stone, and D. F. Thiebaut. A model of workloads and its use in miss-rate prediction for fully assocaitive caches. IEEE Transactions on Computers, 41(7):811–825, 1992.

    Article  Google Scholar 

  20. Larry Stewart. Programming to Optimize Cache Memory on the SUN Ultrasparc-IIi Processor. Master’s thesis, University of Florida, Gainesville, FL, April 1999.

    Google Scholar 

  21. P. Sulatycke and K. Ghose, Caching-efficient multithreaded fast multiplication of sparse matrices. Proceedings 12the International Parallel Processing Symposium, 117–123, 1998.

    Google Scholar 

  22. O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In Proceedings of the 1994 ACM SIGMETRICS: Conference on Measurement and Modelling of Computer Systems, pages 261–271, Nashville, Tennessee, 1994.

    Google Scholar 

  23. O. Temam, C. Fricker, and W. Jalby. Influence of cross-interference on blocked loops: A case study with matrix-vector multiply. The ACM Transactions on Programming Languages and Systems, 17(4):561–575, 1994.

    Google Scholar 

  24. H. Wen and J. L. Baer. Efficient trace driven simulation methods for cache performance analysis. The ACM Transactions on Computer Systems, 9(3):222–241, 1991.

    Article  Google Scholar 

  25. M. E. Wolf and M. S. Lam. A data locality optimizing. In In Proceedings of the SIGPLAN’ 91 Conference on Programming Language Design and Implementation, pages 30–44, Toronto, Ontario, Canada, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Venkataraman, G., Sahni, S., Mukhopadhyaya, S. (2000). A Blocked All-Pairs Shortest-Paths Algorithm. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-44985-X_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67690-4

  • Online ISBN: 978-3-540-44985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics