Nothing Special   »   [go: up one dir, main page]

Skip to main content

Trapezoidal Approximations of Fuzzy Numbers

  • Conference paper
  • First Online:
Fuzzy Sets and Systems — IFSA 2003 (IFSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2715))

Included in the following conference series:

Abstract

The problem of the trapezoidal approximation of fuzzy numbers is discussed. A set of criteria for approximation operators is formulated. A new nearest trapezoidal approximation operator preserving expected interval is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chanas S., On the interval approximation of a fuzzy number, Fuzzy Sets and Systems 122 (2001), 353–356.

    Article  MATH  MathSciNet  Google Scholar 

  2. Dubois D., Prade H., Operations on fuzzy numbers, Int. J. Syst. Sci. 9 (1978), 613–626.

    Article  MATH  MathSciNet  Google Scholar 

  3. Dubois D., Prade H., The mean value of a fuzzy number, Fuzzy Sets and Systems 24 (1987), 279–300.

    Article  MATH  MathSciNet  Google Scholar 

  4. Grzegorzewski P., Metrics and orders in space of fuzzy numbers, Fuzzy Sets and Systems 97 (1998), 83–94.

    Article  MATH  MathSciNet  Google Scholar 

  5. Grzegorzewski P., Interval approximation of a fuzzy number and the principle of information invariance, In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty IPMU’2002, Annecy, 1–5 July 2002, pp. 347–354.

    Google Scholar 

  6. Grzegorzewski P., Nearest interval approximation of a fuzzy number, Fuzzy Sets and Systems 130 (2002), 321–330.

    Article  MATH  MathSciNet  Google Scholar 

  7. Heilpern S., The expected value of a fuzzy number, Fuzzy Sets and Systems 47 (1992), 81–86.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hung W., Wu J., A note on the correlation of fuzzy numbers by expected interval, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9 (2001), 517–523.

    MATH  MathSciNet  Google Scholar 

  9. Jimenez M., Ranking fuzzy numbers through the comaparison of its expected intervals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 4 (1996), 379–388.

    Article  MathSciNet  Google Scholar 

  10. Jimenez M., Rivas J.A., Fuzzy number approximation, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6 (1998), 68–78.

    Article  MathSciNet  Google Scholar 

  11. van Leewijck W., Kerre E.E., Defuzzification: criteria and classification, Fuzzy Sets and Systems 108 (1999), 159–178.

    Article  MathSciNet  Google Scholar 

  12. Runkler T.A., Glesner M., A set of axioms for defuzzification strategies — towards a theory of rational defuzzification operators, in: Proc. 2nd IEEE Internat. Conf. on Fuzzy Systems, San Francisco, 1993, pp. 1161–1166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grzegorzewski, P., Mrówka, E. (2003). Trapezoidal Approximations of Fuzzy Numbers. In: Bilgiç, T., De Baets, B., Kaynak, O. (eds) Fuzzy Sets and Systems — IFSA 2003. IFSA 2003. Lecture Notes in Computer Science, vol 2715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44967-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44967-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40383-8

  • Online ISBN: 978-3-540-44967-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics