Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolution of the Critical Points in the Curvature and Affine Morphological Scale Spaces

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

In this work we analyse the evolution of the critical points of an image by the curvature and affine morphological scale spaces. We define the notions of circular and elliptic extremum and show that an extremum becomes circular by the curvature scale space and elliptic by the affine morphological scale space. The evolution of a saddle point by the curvature scale space is also described. And we show how these properties can lead to numerical methods for the simulation of the curvature scale space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J.Numer.Analysis 29, 845–866, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Andrews, Contraction of convex hypersurfaces by their affine normal. J.Diff.Geometry 43, n.2, 207–230, 1996.

    MATH  Google Scholar 

  3. S. Buchin, Affine differential geometry, Gordon & Breach, NY, 1983.

    MATH  Google Scholar 

  4. M. Craizer and R. Teixeira, Evolution of an extremum by curvature motion, preprint.

    Google Scholar 

  5. M. Craizer, S. Pesco and R. Teixeira, A numerical scheme for the curvature equation near the singularities, pre-print.

    Google Scholar 

  6. L.C. Evans and J. Spruck, Motion of level sets by mean curvature II, Trans.Amer.Math.Soc. 330, n.1, 321–332, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. L.C. Evans and J. Spruck, Motion of level sets by mean curvature III, J.Geom.Analysis 2, n.2, 121–150, 1992.

    MATH  MathSciNet  Google Scholar 

  8. M.E. Gage, Curve shortening makes convex curves circular, Inv.Mathematicae 76, 357–364, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J.Diff.Geometry 23, 69–96, 1986.

    MATH  MathSciNet  Google Scholar 

  10. B.B. Kimia, A. Tannenbaum and S.W. Zucker, Shapes, shocks and deformations, I, Int.J.Comput.Vision 15, 189–224, 1995.

    Article  Google Scholar 

  11. P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, Proc.IEEE Comp.Soc.Workshop Computer Vision, 1987.

    Google Scholar 

  12. G. Sapiro and A. Tannenbaum, On affine plane curve evolution. J.Funct.Analysis 119, 79–120, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Sapiro, Geometric partial differential equations and image analysis. Cambridge University Press, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Craizer, M. (2003). Evolution of the Critical Points in the Curvature and Affine Morphological Scale Spaces. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics