Nothing Special   »   [go: up one dir, main page]

Skip to main content

Content Based Image Retrieval Using Multiscale Top Points

A Feasibility Study

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

A feasibility study for a new method for content based image retrieval is presented. First, an image representation using multiscale top points is introduced. This representation is validated using a minimal variance reconstruction algorithm. The image retrieval problem can now be translated into comparing distances between point sets. For this purpose the proportional transportation distance (PTD) is used. A method is proposed using multiscale top points and their reconstruction coefficients in the PTD to define these distances between images. We present some experiments with promising results on a database with face images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik. Blobworld: A system for region-based image indexing and retrieval. In Third International Conference on Visual Information Systems. Springer, 1999.

    Google Scholar 

  2. L. Florack and A. Kuijper. The topological structure of scale-space images. Journal of Mathematical Imaging and Vision, 12(1):65–79, February 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. D. Griffin and A. C. F. Colchester. Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image and Vision Computing, 13(7):543–557, September 1995.

    Article  Google Scholar 

  4. Amarnath Gupta and Ramesh Jain. Visual information retrieval. Communications of the ACM, 40(5):70–79, 1997.

    Article  Google Scholar 

  5. P. Johansen, S. Skelboe, K. Grue, and J. D. Andersen. Representing signals by their top points in scale-space. In Proceedings of the 8th International Conference on Pattern Recognition (Paris, France, October 1986), pages 215–217. IEEE Computer Society Press, 1986.

    Google Scholar 

  6. S. N. Kalitzin, B. M. ter Haar Romeny, A. H. Salden, P. F. M. Nacken, and M. A. Viergever. Topological numbers and singularities in scalar images: Scale-space evolution properties. Journal of Mathematical Imaging and Vision, 9(3), November 1998.

    Google Scholar 

  7. F.M.W. Kanters, L.M.J. Florack, B. Platel and B.M. ter Haar Romeny. Image reconstruction from multiscale critical points. Elsewhere in these proceedings.

    Google Scholar 

  8. M. Kerckhove, editor. Scale-Space and Morphology in Computer Vision: Proceedings of the Third International Conference, Scale-Space 2001, Vancouver, Canada, volume 2106 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, July 2001.

    Google Scholar 

  9. A. Kuijper and L.M.J. Florack. The application of catastrophe theory to image analysis. Submitted to Image and Vision Computing.

    Google Scholar 

  10. M. Loog, J. J. Duistermaat, and L. M. J. Florack. On the behavior of spatial critical points under Gaussian blurring. a folklore theorem and scale-space constraints. In Kerckhove [8], pages 183–192.

    Google Scholar 

  11. Wei-Ying Ma and B. S. Manjunath. Netra: A toolbox for navigating large image databases. Multimedia Systems, 7(3):184–198, 1999.

    Article  Google Scholar 

  12. M. Flickner, H. Sawhney, et.al. Query by image and video content: the qbic system. IEEE Computer, 28(9):23–32, 1995.

    Google Scholar 

  13. M. Nielsen and M. Lillholm. What do features tell about images? In Kerckhove [8], pages 39–50.

    Google Scholar 

  14. R. Veltkamp P. Giannopoulos. A pseudo-metric for weighted point sets. In ECCV 2002, LNCS 2352, pages 715–730. Springer, 2002.

    Google Scholar 

  15. Y. Rubner. Code for earth movers distance (emd). http://vision.stanford.edu/~rubner/emd/default.htm.

    Google Scholar 

  16. F. Samaria and A. Harter. Parameterisation of a stochastic model for human face identification, 1994.

    Google Scholar 

  17. J. Smith and S. Chang. Single color extraction and image query, 1995.

    Google Scholar 

  18. Markus Stricker and Michael Swain. The capacity and the sensitivity of color histogram indexing. Technical Report TR-94-05, University of Chicago, 3 1994.

    Google Scholar 

  19. M. Swain and D. Ballard. Color indexing. International Journal on Computer Vision, 7(1):11–32, 1991.

    Article  Google Scholar 

  20. L.J. Guibas Y. Rubner, C. Tomasi. A metric for distributions with applications to image databases. In IEEE International Conference on Computer Vision, Bombay, India, pages 59–66, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanters, F., Platel, B., Florack, L., ter Haar Romeny, B.M. (2003). Content Based Image Retrieval Using Multiscale Top Points. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics