Abstract
We present a new approach to model edges in monochrome images. The method is divided in two parts: the localization of possible edge points and their valuation. The first part is based on the theory of minimal paths, where the selection of an energy and a set of sources determines a partition of the domain. Then, the valuation is obtained by the creation of a contrast driven hierarchy of partitions. The method uses only the original image and supplies a set of closed contours that preserve semantically important characteristics of edges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. A. Arbeláez. The path variation. Technical report, CEREMADE, 2003.
S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed transformation. Mathematical Morphology in Image Processing, pages 433–481, 1992.
C. R. Brice and C. L. Fenema. Scene analysis using regions. Artificial Intelligence, 1:205–226, 1970.
J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, November 1986.
L. D. Cohen. Multiple contour finding and perceptual grouping using minimal paths. Journal of Mathematical Imaging and Vision, 14(3):225–236, 2001.
L. D. Cohen and R. Kimmel. Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision, 24(1):57–78, August 1997.
L. D. Cohen, L. Vinet, P. Sander, and A. Gagalowicz. Hierarchical region based stereo matching. In Proc. 6th Scandinavian Conference on Image Analysis, 1989.
T. Deschamps and L. D. Cohen. Fast extraction of minimal paths in 3d images and applications to virtual endoscopy. Medical Image Analysis, 5(4):281–299, 2001.
E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathemetic, 1:269–271, 1959.
D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.
L. Garrido, P. Salembier, and D. Garcia. Extensive operators in partition lattices for image sequence analysis. Signal Processing, 66(2):157–180, April 1998. Special Issue on Video Sequence Segmentation.
M. Grimaud. New measure of contrast: Dynamics. In Image Algebra and Morphological Processing III, SPIE, San Diego, CA., 1992.
R. Haralick and L. Shapiro. Computer and Robot Vision, volume I. Adison Wesley, 1992.
E. Hewitt and K. Stromberg. Real and Abstract Analysis. Springer Verlag, 1969.
S. L. Horowitz and T. Pavlidis. Picture segmentation by a directed split-and-merge procedure. In Proceedings of the Second International Joint Conference on Pattern Recognition, pages 424–433, 1974.
C. Jordan. Sur la série de fourier. C. R. Acad. Sci. Paris Sér. I Math., 92(5):228–230, 1881.
R. Kimmel and A. M. Bruckstein. Global shape from shading. CVIU, 62(3):360–369, 1995.
R. Kimmel, N. Kiryati, and A. M. Bruckstein. Distance maps and weighted distance transforms. Journal of Mathematical Imaging and Vision, 6:223–233, May 1996. Special Issue on Topology and Geometry in Computer Vision.
A. S. Kronrod. On functions of two variables. Uspehi Mathematical Sciences, 5(35), 1950. In Russian.
R. Kruse and A. Ryba. Data structures and program design in C++. Prentice Hall, New York, 1999.
P. Maragos and M. A. Butt. Curve evolution, differential morphology and distance transforms applied to multiscale and eikonal problems. Fundamenta Informaticae, 41:91–129, 2000.
D. Marr and E. Hildreth. Theory of edge detection. In Proc. of Royal Sociery of London, volume B-207, pages 187–217, 1980.
F. Meyer. Topographic distances and watershed lines. Signal Processing, 38:113–125, 1994.
F. Meyer. Hierarchies of partitions and morphological segmentation. In Michael Kerckhove, editor, Scale Space and Morphology in Computer Vision, pages 161–182, 2001.
J. M. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser, 1995.
L. Najman. Morphologie Mathématique: de la Segmentation d’Images à l’Analyse Multivoque. PhD thesis, Université Paris Dauphine, 1994.
L. Najman and M. Schmitt. Watershed of a continuous function. Signal Processing, 38(1):99–112, July 1994.
L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1163–1173, 1996.
I. P. Natansson. Theory of Functions of a Real Variable. Frederick Ungar Publishing, New York, 1964.
J. R. Parker. Algorithms for Image Processing and Computer Vision. John Wiley and Sons, 1997.
M. Schmitt and J. Mattioli. Morphologie Mathématique. Masson, 1994.
J. Serra and P. Salembier. Connected operators and pyramids. In SPIE, editor, Image Algebra and Mathematical Morphology, volume 2030, pages 65–76, San Diego CA., July 1993.
J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK, 2 edition, 1999.
L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. PAMI, 13(6):583–598, 1990.
T. Vlachos and A. G. Constantinides. Graph-theoretical approach to colour picture segmentation and contour classification. In IEE Proc. Vision, Image and Sig. Proc., volume 140, pages 36–45, February 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arbeláez, P.A., Cohen, L.D. (2003). The Extrema Edges. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_13
Download citation
DOI: https://doi.org/10.1007/3-540-44935-3_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40368-5
Online ISBN: 978-3-540-44935-5
eBook Packages: Springer Book Archive