Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Extrema Edges

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

We present a new approach to model edges in monochrome images. The method is divided in two parts: the localization of possible edge points and their valuation. The first part is based on the theory of minimal paths, where the selection of an energy and a set of sources determines a partition of the domain. Then, the valuation is obtained by the creation of a contrast driven hierarchy of partitions. The method uses only the original image and supplies a set of closed contours that preserve semantically important characteristics of edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. A. Arbeláez. The path variation. Technical report, CEREMADE, 2003.

    Google Scholar 

  2. S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed transformation. Mathematical Morphology in Image Processing, pages 433–481, 1992.

    Google Scholar 

  3. C. R. Brice and C. L. Fenema. Scene analysis using regions. Artificial Intelligence, 1:205–226, 1970.

    Article  Google Scholar 

  4. J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, November 1986.

    Article  Google Scholar 

  5. L. D. Cohen. Multiple contour finding and perceptual grouping using minimal paths. Journal of Mathematical Imaging and Vision, 14(3):225–236, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. D. Cohen and R. Kimmel. Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision, 24(1):57–78, August 1997.

    Article  Google Scholar 

  7. L. D. Cohen, L. Vinet, P. Sander, and A. Gagalowicz. Hierarchical region based stereo matching. In Proc. 6th Scandinavian Conference on Image Analysis, 1989.

    Google Scholar 

  8. T. Deschamps and L. D. Cohen. Fast extraction of minimal paths in 3d images and applications to virtual endoscopy. Medical Image Analysis, 5(4):281–299, 2001.

    Article  Google Scholar 

  9. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathemetic, 1:269–271, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.

    Google Scholar 

  11. L. Garrido, P. Salembier, and D. Garcia. Extensive operators in partition lattices for image sequence analysis. Signal Processing, 66(2):157–180, April 1998. Special Issue on Video Sequence Segmentation.

    Article  MATH  Google Scholar 

  12. M. Grimaud. New measure of contrast: Dynamics. In Image Algebra and Morphological Processing III, SPIE, San Diego, CA., 1992.

    Google Scholar 

  13. R. Haralick and L. Shapiro. Computer and Robot Vision, volume I. Adison Wesley, 1992.

    Google Scholar 

  14. E. Hewitt and K. Stromberg. Real and Abstract Analysis. Springer Verlag, 1969.

    Google Scholar 

  15. S. L. Horowitz and T. Pavlidis. Picture segmentation by a directed split-and-merge procedure. In Proceedings of the Second International Joint Conference on Pattern Recognition, pages 424–433, 1974.

    Google Scholar 

  16. C. Jordan. Sur la série de fourier. C. R. Acad. Sci. Paris Sér. I Math., 92(5):228–230, 1881.

    Google Scholar 

  17. R. Kimmel and A. M. Bruckstein. Global shape from shading. CVIU, 62(3):360–369, 1995.

    Google Scholar 

  18. R. Kimmel, N. Kiryati, and A. M. Bruckstein. Distance maps and weighted distance transforms. Journal of Mathematical Imaging and Vision, 6:223–233, May 1996. Special Issue on Topology and Geometry in Computer Vision.

    Article  MathSciNet  Google Scholar 

  19. A. S. Kronrod. On functions of two variables. Uspehi Mathematical Sciences, 5(35), 1950. In Russian.

    Google Scholar 

  20. R. Kruse and A. Ryba. Data structures and program design in C++. Prentice Hall, New York, 1999.

    Google Scholar 

  21. P. Maragos and M. A. Butt. Curve evolution, differential morphology and distance transforms applied to multiscale and eikonal problems. Fundamenta Informaticae, 41:91–129, 2000.

    MATH  MathSciNet  Google Scholar 

  22. D. Marr and E. Hildreth. Theory of edge detection. In Proc. of Royal Sociery of London, volume B-207, pages 187–217, 1980.

    Google Scholar 

  23. F. Meyer. Topographic distances and watershed lines. Signal Processing, 38:113–125, 1994.

    Article  MATH  Google Scholar 

  24. F. Meyer. Hierarchies of partitions and morphological segmentation. In Michael Kerckhove, editor, Scale Space and Morphology in Computer Vision, pages 161–182, 2001.

    Google Scholar 

  25. J. M. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser, 1995.

    Google Scholar 

  26. L. Najman. Morphologie Mathématique: de la Segmentation d’Images à l’Analyse Multivoque. PhD thesis, Université Paris Dauphine, 1994.

    Google Scholar 

  27. L. Najman and M. Schmitt. Watershed of a continuous function. Signal Processing, 38(1):99–112, July 1994.

    Article  Google Scholar 

  28. L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1163–1173, 1996.

    Article  Google Scholar 

  29. I. P. Natansson. Theory of Functions of a Real Variable. Frederick Ungar Publishing, New York, 1964.

    Google Scholar 

  30. J. R. Parker. Algorithms for Image Processing and Computer Vision. John Wiley and Sons, 1997.

    Google Scholar 

  31. M. Schmitt and J. Mattioli. Morphologie Mathématique. Masson, 1994.

    Google Scholar 

  32. J. Serra and P. Salembier. Connected operators and pyramids. In SPIE, editor, Image Algebra and Mathematical Morphology, volume 2030, pages 65–76, San Diego CA., July 1993.

    Google Scholar 

  33. J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK, 2 edition, 1999.

    MATH  Google Scholar 

  34. L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. PAMI, 13(6):583–598, 1990.

    Google Scholar 

  35. T. Vlachos and A. G. Constantinides. Graph-theoretical approach to colour picture segmentation and contour classification. In IEE Proc. Vision, Image and Sig. Proc., volume 140, pages 36–45, February 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbeláez, P.A., Cohen, L.D. (2003). The Extrema Edges. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics