Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Selection of Unique and Popular Oligos for Large EST Databases

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2676))

Included in the following conference series:

Abstract

EST databases have grown exponentially in recent years and now represent the largest collection of genetic sequences. An important application of these databases is that they contain information useful for the design of gene-specific oligonucleotides (or simply, oligos) that can be used in PCR primer design, microarray experiments, and genomic library screening. In this paper, we study two complementary problems concerning the selection of short oligos, e.g., 20–50 bases, from a large database of tens of thousands of EST sequences: (i) selection of oligos each of which appears (exactly) in one EST sequence but does not appear (exactly or approximately) in any other EST sequence and (ii) selection of oligos that appear (exactly or approximately) in many ESTs. The first problem is called the unique oligo problem and has applications in PCR primer and microarray probe designs. The second is called the popular oligo problem and is useful in screening genomic libraries (such as BAC libraries) for gene-rich regions. We present an efficient algorithm to identify all unique oligos in the ESTs and an efficient heuristic algorithm to enumerate the most popular oligos. By taking into account the distribution of the frequencies of the words in the EST database, the algorithms have been carefully engineered to achieve remarkable running times on regular PCs. Each of the algorithms takes only a couple of hours (on a 1.2 GHz CPU, 1 GB RAM machine) to run on a dataset 28 Mbases of barley ESTs from the HarvEST database. We present simulation results on synthetic data and a preliminary analysis of the barley EST database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., Kerlavage, A.R., McCombie, W.R., Venter, J.C.: Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252 (1991) 1651–1656

    Article  Google Scholar 

  2. Boguski, M., Lowe, T., Tolstoshev, C.: dbEST-database for “expressed sequence tags”. Nat. Genet. 4 (1993) 332–3

    Article  Google Scholar 

  3. Yu, Y., Tomkins, J.P., Waugh, R., Frisch, D.A., Kudrna, D., Kleinhofs, A., Brueggeman, R.S., Muehlbauer, G.J., Wise, R.P., Wing, R.A.: A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101 (2000) 1093–1099

    Article  Google Scholar 

  4. Close, T., Wing, R., Kleinhofs, A., Wise, R.: Genetically and physically anchored EST resources for barley genomics. Barley Genetics Newsletter 31 (2001) 29–30

    Google Scholar 

  5. Michalek, W., Weschke, W., Pleissner, K., Graner, A.: Est analysis in barley defines a unigene set comprising 4,000 genes. Theor Appl Genet 104 (2002) 97–103

    Article  Google Scholar 

  6. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome Research 9 (1999) 868–877

    Article  Google Scholar 

  7. Han, C., Sutherland, R., Jewett, P., Campbell, M., Meincke, L., Tesmer, J., Mundt, M., Fawcett, J., Kim, U., Deaven, L., Doggett, N.: Construction of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization. Genome Research 104 (2000) 714–721

    Article  Google Scholar 

  8. Barakat, A., Carels, N., Bernardi, G.: The distribution of genes in the genomes of gramineae. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 6857–6861

    Article  Google Scholar 

  9. Rahmann, S.: Rapid large-scale oligonucleotide selection for microarrays. In: Proceedings of the First IEEE Computer Society Bioinformatics Conference (CSB’02), IEEE Press (2002)

    Google Scholar 

  10. Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning 21 (1995) 51–80

    Google Scholar 

  11. Jonassen, I., Collins, J.F., Higgins, D.G.: Finding flexible patterns in unaligned protein sequences. Protein Science 4 (1995) 1587–1595

    Article  Google Scholar 

  12. Jonassen, I.: Efficient discovery of conserved patterns using a pattern graph. Comput. Appl. Biosci. 13 (1997) 509–522

    Google Scholar 

  13. Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological sequences: The Teiresias algorithm. Bioinformatics 14 (1998) 55–67

    Article  Google Scholar 

  14. Hertz, G., Stormo, G.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15 (1999) 563–577

    Article  Google Scholar 

  15. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.: Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 262 (1993) 208–214

    Article  Google Scholar 

  16. Neuwald, A., Liu, J., Lawrence, C.: Gibbs motif sampling: Detecting bacterial outer membrane protein repeats. Protein Science 4 (1995) 1618–1632

    Google Scholar 

  17. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle signals in DNA sequences. In: Proc. of the International Conference on Intelligent Systems for Molecular Biology, AAAI press, Menlo Park, CA (2000) 269–278

    Google Scholar 

  18. Keich, Pevzner: Finding motifs in the twilight zone. In: Annual International Conference on Computational Molecular Biology, Washington, DC (2002) 195–204

    Google Scholar 

  19. Tompa, M., Buhler, J.: Finding motifs using random projections. In: Annual International Conference on Computational Molecular Biology, Montreal, Canada (2001) 67–74

    Google Scholar 

  20. Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput. Bio. 9 (2002) 225–242

    Article  Google Scholar 

  21. Apostolico, A., Bock, M.E., Lonardi, S.: Monotony of surprise and large-scale quest for unusual words (extended abstract). In Myers, G., Hannenhalli, S., Istrail, S., Pevzner, P., Waterman, M., eds.: Proc. of Research in Computational Molecular Biology (RECOMB), Washington, DC (2002)

    Google Scholar 

  22. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences. In: Proc. of the International Conference on Intelligent Systems for Molecular Biology, AAAI press, Menlo Park, CA (2002) Bioinformatics S181–S188

    Google Scholar 

  23. Li, F., Stormo, G.D.: Selection of optimal DNA oligos for gene expression arrays. Bionformatics 17 (2001) 1067–1076

    Article  Google Scholar 

  24. Rouillard, J.M., Herbert, C.J., Zuker, M.: Oligoarray: Genome-scale oligonucleotide design for microarrays. Bioinformatics 18 (2002) 486–487

    Article  Google Scholar 

  25. Swofford, D. In: PAUP: Phylogenetic Analysis Using Parsimony version 4.0 beta 10. Sinauer Associates, Sunderland, Massachusetts (2002)

    Google Scholar 

  26. Wesselink, J.J., de la Iglesia, B., James, S.A., Dicks, J.L., Roberts, I.N., Rayward-Smith, V.J.: Determining a unique defining DNA sequence for yeast species using hashing techniques. Bionformatics 18 (2002) 1004–1010

    Article  Google Scholar 

  27. Ito, M., Shimizu, K., Nakanishi, M., Hashimoto, A.: Polynomial-time algorithms for computing characteristic strings. In Crochemore, M., Gusfield, D., eds.: Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching. Number 807 in Lecture Notes in Computer Science, Asilomar, CA, Springer-Verlag, Berlin (1994) 274–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, J., Close, T.J., Jiang, T., Lonardi, S. (2003). Efficient Selection of Unique and Popular Oligos for Large EST Databases. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds) Combinatorial Pattern Matching. CPM 2003. Lecture Notes in Computer Science, vol 2676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44888-8_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44888-8_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40311-1

  • Online ISBN: 978-3-540-44888-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics