Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Supervised Approach in Background Modelling for Visual Surveillance

  • Conference paper
  • First Online:
Audio- and Video-Based Biometric Person Authentication (AVBPA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2688))

Abstract

In this paper we address the context of visual surveillance in outdoor environments involving the detection of moving objects in the observed scene. In particular, a reliable foreground segmentation, based on a background subtraction approach, is explored. We firstly address the problem arising when small movements of background objects, as trees blowing in the wind, generate false alarms. We propose a background model that uses a supervised training for coping with these situations. In addition, in real outdoor scenes the continuous variations of lighting conditions determine unexpected intensity variations in the background model parameters. We propose a background updating algorithm that work on all the pixels in the background image, even if covered by a foreground object. The experiments have been performed on real image sequences acquired in a real archeological site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Fejes, L.S. Davis, Detection of independent motion using directional motion estimation, Technical Report. CAR-TR-866, CS-TR 3815, Univ. of Mar., Aug. 1997.

    Google Scholar 

  2. S. Fejes, L.S. Davis, What can projections of flow fields tell us about the visual motion, In Proc Intern. Confer. on Computer Vision ICCV98, 1998, pp. 979–986.

    Google Scholar 

  3. S. Fejes, L.S. Davis, Exploring visual motion using projections of flow fields, In. Proc. of the DARPA Image Underst. Work., pp.113–122, New Orleans, LA,1997.

    Google Scholar 

  4. L. Wixson, M. Hansen, Detecting salient motion by accumulating directionalconsistent flow, In proc. of Intern. Conf. on Comp. Vis., 1999, vol II, pp 797–804.

    Google Scholar 

  5. C. Anderson, P. Burt, G. Van Der Wal, Change detection and tracking using pyramid transformation techniques, In Proc. of SPIE-Intell. Robots and Comp. Vision Vol. 579, pp.72–78, 1985.

    Google Scholar 

  6. I. Haritaoglu, D. Harwood, L. Davis, A Fast Background Scene Modeling and Maintenance for Outdoor Surveillance, ICPR, pp.179–183, Barcelona,2000.

    Google Scholar 

  7. C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, Pfinder: Real-time tracking of the human body, IEEE Trans. on Patt. An. and Mach. Intell. 19(7): pp.780–785, 1997.

    Article  Google Scholar 

  8. T. Kanade, T. Collins, A. Lipton, Advances in Cooperative Multi-Sensor Video Surveillance, Darpa Image Underst. Work., Morgan Kaufmann, Nov. 1998, pp. 3–24.

    Google Scholar 

  9. H. Fujiyoshi, A. J. Lipton, Real-time human motion analysis by image skeletonisation, IEEE WACV, Princeton NJ, October 1998, pp.15–21.

    Google Scholar 

  10. P. Spagnolo, A. Branca, G. Attolico, A. Distante: Fast Background Modeling and Shadow Removing for Outdoor Surveillance, IASTED VIIP, 2002, pag. 668–671.

    Google Scholar 

  11. M. Leo, G. Attolico, A. Branca, A. Distante: Object classification with multiresolution wavelet decomposition, in Proc. of SPIE Aerosense 2002, conference on Wavelet Applications, 1–5 April, 2002, Orlando, Florida, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spagnolo, P., Leo, M., Attolico, G., Distante, A. (2003). A Supervised Approach in Background Modelling for Visual Surveillance. In: Kittler, J., Nixon, M.S. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2003. Lecture Notes in Computer Science, vol 2688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44887-X_70

Download citation

  • DOI: https://doi.org/10.1007/3-540-44887-X_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40302-9

  • Online ISBN: 978-3-540-44887-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics