Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the application of Associative Morphological Memories to Hyperspectral Image Analysis

  • Conference paper
  • First Online:
Artificial Neural Nets Problem Solving Methods (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2687))

Included in the following conference series:

Abstract

We propose a spectrum selection procedure from hyperspectral images, which uses the Autoassociative Morphological Memories (AMM) as detectors of morphological independence conditions. Selected spectra may be used as endmembers for spectral unmixing. Endmember spectra lie in the vertices of a convex region that covers the image pixel spectra. Therefore, morphological independence is a necessary condition for these vertices. The selective sensitivity of AMM’s to erosive and dilative noise allows their use as morphological independence detectors.

The authors received partial support of the Ministerio de Ciencia y Tecnologia under grant TIC2000-0739-C04-02

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Craig M., Minimum volume transformations for remotely sensed data, IEEE Trans. Geos. Rem. Sensing, 32(3):542–552

    Google Scholar 

  2. Hopfield J.J., (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sciences, vol. 79, pp. 2554–2558

    MathSciNet  Google Scholar 

  3. Ifarraguerri A., C.-I Chang, (1999) Multispectral and Hyperspectral Image Analysis with Convex Cones, IEEE Trans. Geos. Rem. Sensing, 37(2):756–770

    Article  Google Scholar 

  4. Keshava N., J.F. Mustard Spectral unimixing, IEEE Signal Proc. Mag. 19(1) pp:44–57 (2002)

    Google Scholar 

  5. Rand R.S., D.M. Keenan (2001) A Spectral Mixture Process Conditioned by Gibbs-Based Partitioning, IEEE Trans. Geos. Rem. Sensing, 39(7):1421–1434

    Article  Google Scholar 

  6. Ritter G. X., J. L. Diaz-de-Leon, P. Sussner. (1999) Morphological bidirectional associative memories. Neural Networks, Volume 12, pages 851–867

    Article  Google Scholar 

  7. Ritter G. X., P. Sussner, J. L. Diaz-de-Leon. (1998) Morphological associative memories. IEEE Trans. on Neural Networks, 9(2):281–292

    Article  Google Scholar 

  8. Ritter G.X., G. Urcid, L. Iancu, (2002) Reconstruction of patterns from moisy inputs using morphological associative memories, J. Math. Imag. Visionin press

    Google Scholar 

  9. Sussner P., (2001) Observations on Morphological Associative Memories and the Kernel Method, Proc. IJCNN)2001, Washington DC, July

    Google Scholar 

  10. Tadjudin, S. and D. Landgrebe,(1999) Covariance Estimation with Limited Training Samples, IEEE Trans. Geos. Rem. Sensing, 37(4):2113–2118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graña, M., Gallego, J., Torrealdea, F.J., d’Anjou, A. (2003). On the application of Associative Morphological Memories to Hyperspectral Image Analysis. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_72

Download citation

  • DOI: https://doi.org/10.1007/3-540-44869-1_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40211-4

  • Online ISBN: 978-3-540-44869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics