Abstract
We propose a spectrum selection procedure from hyperspectral images, which uses the Autoassociative Morphological Memories (AMM) as detectors of morphological independence conditions. Selected spectra may be used as endmembers for spectral unmixing. Endmember spectra lie in the vertices of a convex region that covers the image pixel spectra. Therefore, morphological independence is a necessary condition for these vertices. The selective sensitivity of AMM’s to erosive and dilative noise allows their use as morphological independence detectors.
The authors received partial support of the Ministerio de Ciencia y Tecnologia under grant TIC2000-0739-C04-02
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Craig M., Minimum volume transformations for remotely sensed data, IEEE Trans. Geos. Rem. Sensing, 32(3):542–552
Hopfield J.J., (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sciences, vol. 79, pp. 2554–2558
Ifarraguerri A., C.-I Chang, (1999) Multispectral and Hyperspectral Image Analysis with Convex Cones, IEEE Trans. Geos. Rem. Sensing, 37(2):756–770
Keshava N., J.F. Mustard Spectral unimixing, IEEE Signal Proc. Mag. 19(1) pp:44–57 (2002)
Rand R.S., D.M. Keenan (2001) A Spectral Mixture Process Conditioned by Gibbs-Based Partitioning, IEEE Trans. Geos. Rem. Sensing, 39(7):1421–1434
Ritter G. X., J. L. Diaz-de-Leon, P. Sussner. (1999) Morphological bidirectional associative memories. Neural Networks, Volume 12, pages 851–867
Ritter G. X., P. Sussner, J. L. Diaz-de-Leon. (1998) Morphological associative memories. IEEE Trans. on Neural Networks, 9(2):281–292
Ritter G.X., G. Urcid, L. Iancu, (2002) Reconstruction of patterns from moisy inputs using morphological associative memories, J. Math. Imag. Visionin press
Sussner P., (2001) Observations on Morphological Associative Memories and the Kernel Method, Proc. IJCNN)2001, Washington DC, July
Tadjudin, S. and D. Landgrebe,(1999) Covariance Estimation with Limited Training Samples, IEEE Trans. Geos. Rem. Sensing, 37(4):2113–2118
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Graña, M., Gallego, J., Torrealdea, F.J., d’Anjou, A. (2003). On the application of Associative Morphological Memories to Hyperspectral Image Analysis. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_72
Download citation
DOI: https://doi.org/10.1007/3-540-44869-1_72
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40211-4
Online ISBN: 978-3-540-44869-3
eBook Packages: Springer Book Archive