Abstract
Co-evolution is a posible solution to the problem of simultaneous optimization of artificial neural network and training agorithm parameters, due to its ability to deal with vast search spaces. Moreover, this scheme is recommendable when the optimization problem is decomposable in subcomponents.
In this paper an approach to cooperative co-evolutionary optimisation of multilayer perceptrons, that improves the G-Prop genetic back-propagation algorithm, is presented.
Obtained results show that this co-evolutionary version of G-Prop obtains similar or better results needing much fewer training epochs and thus using much less time than the sequential versions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. A. Castillo, J. J. Merelo, V. Rivas, G. Romero, and A. Prieto. G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Neurocomputing, Vol.35/1–4, pp.149–163, 2000.
P.A. Castillo, M.G. Arenas, J. J. Merelo, V. Rivas, and G. Romero. Optimisation of Multilayer Perceptrons Using a Distributed Evolutionary Algorithm with SOAP. Lecture Notes in Computer Science, Vol.2439, pp.676–685, Springer-Verlag, 2002.
P.A. Castillo, J.J. Merelo, G. Romero, A. Prieto, and I. Rojas. Statistical Analysis of the Parameters of a Neuro-Genetic Algorithm. in IEEE Transactions on Neural Networks, vol.13, no.6, pp.1374–1394, ISSN:1045-9227, november, 2002.
S. Fahlman. Faster-Learning Variations on Back-Propagation: An Empirical Study. Proc. of the 1988 Connectionist Models Summer School, Morgan Kaufmann, 1988.
Jennifer Hallinan and Paul Jackway. Co-operative evolution of a neural classifier and feature subset. Lecture Notes in Computer Science, 1585:397–404, 1999.
P. Husbands. Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint optimisation. Evolutionary Computing, Lecture Notes in Computer Science, Vol. 865, pp.150–165, T. Fogarty (Ed.), Springer-Verlag, 1994.
J.J. Merelo, J.G. Castellano, and P.A. Castillo. Algoritmos evolutivos P2P usando SOAP. pages 31–37. Universidad de Extremadura, Febrero 2002.
P. Kuchenko. SOAP::Lite. Available from http://www.soaplite.com.
H.A. Mayer, R. Schwaiget, and R. Huber. Evolving topologies of artificial neural networks adapted to image processing tasks. In Proc. of 26th Int. Symp. on Remote Sensing of Environment, pp.71–74, Vancouver, BC, Canada, 1996.
J. J. Merelo. OPEAL, una librería de algoritmos evolutivos. Actas del Primer Congreso Espa~nol de Algoritmos Evolutivos y Bioinspirados. ISBN:84-607-3913-9. pp.54–59. Mérida, Spain, febrero, 2002.
Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, Third, Extended Edition. Springer-Verlag, 1996.
D.E. Moriarty and R. Miikkulainen. Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation, vol.4, no.5, 1998.
J. Paredis. Coevolutionary computation. Artificial Life, 2:355–375, 1995.
R. Parekh, J. Yang, and V. Honavar. Constructive Neural Network Learning Algorithms for Pattern Classification. IEEE Transactions on Neural Networks. 11(2), pp. 436–451, 2000.
M.A. Potter and K.A. De Jong. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.
L. Prechelt. PROBEN1 — A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994.
C.D. Rosin and R.K. Belew. New methods for competitive coevolution. Evolutionary Computation, 5(1):1–29, 1997.
R. Smalz and M. Conrad. Combining evolution with credit apportionment: A new learning algorithm for neural nets. Neural Networks, vol.7, no.2, pp.341–351, 1994.
D. Box; D. Ehnebuske; G. Kakivaya; A. Layman; N. Mendelsohn; H.F. Nielsen; S. Thatte; D. Winer. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000. Available from http://www.w3.org/TR/SOAP.
X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.
Q. Zhao. Co-evolutionary learning of neural networks. Journal of Intelligent and Fuzzy Systems 6, pp.83–90. ISSN 1064-1246, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castillo, P., Arenas, M., Merelo, J., Romero, G. (2003). Cooperative Co-evolution of Multilayer Perceptrons. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_46
Download citation
DOI: https://doi.org/10.1007/3-540-44868-3_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40210-7
Online ISBN: 978-3-540-44868-6
eBook Packages: Springer Book Archive