Abstract
Multiresolution analysis in multiwavelet bases is being investigated as an alternative computational framework for molecular electronic structure calculations. The features that make it attractive include an orthonormal basis, fast algorithms with guaranteed precision and sparse representations of many operators (e.g., Green functions). In this paper, we discuss the multiresolution formulation of quantum chemistry including application to density functional theory and developments that make practical computation in three and higher dimensions.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Dunning, Jr., T.H., Peterson, K.A., and Woon, D. E.: Gaussian Basis Sets for Use in Correlated Calculations, in Encyclopedia of Computational Chemistry, Ed., P. v. R. Schleyer, (John Wiley & Sons Ltd., 1997)
Dunlap, B.I., Connolly, J.W.D., and Sabin, J.R.: J. Chem. Phys. 71 (1979) 3396 and 4993
Vahtras, O., Almlöf, J., and Feyereisen, M. W.: Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett 213 (1993) 514; Feyereisen, M., Fitzgerald, G., and Komornicki, A.: Chem. Phys. Lett. 208 (1993) 359
Challacombe, M., Schwegler E., and Almlöf, J.: pp 53–107 in Review of Current Trends, ed. J. Leczszynski (World Scientific, 1996)
Alpert, B., Beylkin, G., Gines, D., and Vozovoi, L.: Adaptive Solution of Partial Differential Equations in Multiwavelet Bases, J. Comp. Phys. 182 (2002) 149–190
Beylkin, G., Coifman, R., and Rohklin, V.: Fast wavelet transforms and numerical algorithms, I, Comm. Pure. Appl. Math. 44 141 (1991) 183
Alpert, B.K.: A Class of Bases in L 2 for the Sparse Representation of Integral Operators, SIAM J. Math. Anal. 24 (1993) 246–262
Harrison, R.J., Fann, G.I., Yanai, T., and Beylkin, G.: Multiresolution Quantum Chemistry, in preparation, 2003.
Beylkin, G. and Mohlenkamp, M.J.: Numerical operator calculus in higher dimensions, Proc. Nat. Acad. Sci. 99 (2002) 10246–10251
Beylkin, G. and Monzon, L., work in progress.
Li, X.-P.; Nunes, R.W. and Vanderbilt, D.: Density-matrix electronic-structure method with linear system-size scaling, Phy. Rev. B 47 (1993) 10891
Beylkin, G., Coult, N. and Mohlenkamp, M.J.: Fast Spectral Projection Algorithms for Density-Matrix Computations, J. Comp.Phys. 152 (1999) 32–54
Goedecker, S.: Linear Scaling Electronic Structure Methods, Rev. Mod. Phys. 71 (1999) 1085
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harrison, R.J., Fann, G.I., Yanai, T., Beylkin, G. (2003). Multiresolution Quantum Chemistry in Multiwavelet Bases. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds) Computational Science — ICCS 2003. ICCS 2003. Lecture Notes in Computer Science, vol 2660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44864-0_11
Download citation
DOI: https://doi.org/10.1007/3-540-44864-0_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40197-1
Online ISBN: 978-3-540-44864-8
eBook Packages: Springer Book Archive