Abstract
matcont is a Matlab continuation package with a GUI for the interactive numerical study of a range of parameterized nonlinear problems. In the case of ODEs it allows to compute curves of equilibria, limit points, Hopf points, limit cycles, period doubling bifurcation points of limit cycles and fold bifurcation points of limit cycles. It can use the symbolic toolbox of Matlab to compute derivatives of order up to five of the object function. We discuss some details on the implementation of the limit cycles and the fold bifurcation of limit cycles in matcont. The inherent sparsity of the discretized systems for the computation of limit cycles and their bifurcation points is exploited by using the standard Matlab sparse matrix methods.
Chapter PDF
Similar content being viewed by others
References
Allgower, E.L., Georg, K.: Numerical Continuation Methods: An introduction, Springer-Verlag (1990)
Beyn, W.J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Yu.A., Sandstede, B.: Numerical continuation and computation of normal forms. In: B. Fiedler, G. Iooss, and N. Kopell (eds.) “Handbook of Dynamical Systems: Vol 2, Elsevier (2002) 149–219.
Bykov, V.I., Yablonski, G.S., Kim V.F.: On the simple model of kinetic self-oscillations in catalytic reaction of CO oxidation, Dokl. Akad. Nauk SSSR 242(3)(1978) 637–639
De Boor, C. and Swartz, B.: Collocation at Gaussian points, SIAM Journal on Numerical Analysis 10(1973) 582–606.
Dhooge, A., Govaerts, W., Kuznetsov Yu.A.: matcont: A matlab package for numerical bifurcation analysis of ODEs, to appear in TOMS (2003).
Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Yu.A., Sandstede, B., Wang, X.J., auto97-auto2000: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), User’s Guide, Concordia University, Montreal, Canada (1997–2000). (http://indy.cs.concordia.ca).
Doedel, E.J., Govaerts W., Kuznetsov, Yu.A.: Computation of Periodic Solution Bifurcations in ODEs using Bordered Systems, to appear in SIAM Journal on Numerical Analysis (2001).
Govaerts, W.: Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia (2000).
Khibnik, A.I., Bykov, V.I., Yablonski, G.S.: 23 phase portraits of the simplest catalytic oscillator, J. Fiz. Khim. 61(1987) 1388–1390
Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, New York (1998)
Kuznetsov, Yu.A., Levitin, V.V., content: Integrated Environment for analysis of dynamical systems. CWI, Amsterdam (1997): ftp://ftp.cwi.nl/pub/CONTENT
matlab, The Mathworks Inc., http://www.mathworks.com
Mestrom, W.: Continuation of limit cycles in matlab, Master Thesis, Mathematical Institute, Utrecht University, The Netherlands (2002).
Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber, Biophys J. 35 (1981) 193–213
Riet, A.: A Continuation Toolbox in matlab, Master Thesis, Mathematical Institute, Utrecht University, The Netherlands (2000).
Terman, D.: Chaotic spikes arising from a model of burstingin excitable membranes, Siam J. Appl. Math. 51 (1991) 1418–1450.
Terman, D.: The transition from burstingto continuous spikingin excitable membrane models, J. Nonlinear Sci. 2, (1992) 135–182.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dhooge, A., Govaerts, W., Kuznetsov, Y.A. (2003). Numerical Continuation of Fold Bifurcations of Limit Cycles in MATCONT. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds) Computational Science — ICCS 2003. ICCS 2003. Lecture Notes in Computer Science, vol 2657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44860-8_72
Download citation
DOI: https://doi.org/10.1007/3-540-44860-8_72
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40194-0
Online ISBN: 978-3-540-44860-0
eBook Packages: Springer Book Archive