Abstract
We study some methods of obtaining approximations to surfaces of minimal area with prescribed border using triangular Bézier patches. Some methods deduced from a variational principle are proposed and compared with some masks.
This work has been partially supported ministry of Sci. and Tech. BFM2002-00770 and Bancaixa-Universitat Jaume I, P1-1A2002-110.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
C. Cosín, J. Monterde, Bézier surfaces of minimal area, Proceedings of the Int. Conf. of Computational Science, ICCS’2002, Amsterdam, eds. Sloot, Kenneth Tan, Dongarra, Hoekstra, LNCS 2330, vol II, pages 72–81, Springer-Verlag, (2002).
G. Farin, D. Hansford, Discrete Coons patches, CAGD 16, 691–700 (1999).
J. Gallier, Curves and surfaces in Geometric Modeling, Morgan Kaufmann publishers, S.Francisco, California, (2000).
J. Hoscheck and D. Lasser, Fundamentals of Computer Aided Geometric Design, A.K.Peters, Wellesley, (1993).
J. Monterde, B’ezier surfaces of minimal area: The Dirichlet approach, preprint.
R. Veltkamp, W. Wesselink, Variational Modeling of triangular B’ezier Surfaces, pr.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arnal, A., Lluch, A., Monterde, J. (2003). Triangular Bézier Surfaces of Minimal Area. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_38
Download citation
DOI: https://doi.org/10.1007/3-540-44842-X_38
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40156-8
Online ISBN: 978-3-540-44842-6
eBook Packages: Springer Book Archive