Nothing Special   »   [go: up one dir, main page]

Skip to main content

Triangular Bézier Surfaces of Minimal Area

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2669))

Included in the following conference series:

  • 1540 Accesses

Abstract

We study some methods of obtaining approximations to surfaces of minimal area with prescribed border using triangular Bézier patches. Some methods deduced from a variational principle are proposed and compared with some masks.

This work has been partially supported ministry of Sci. and Tech. BFM2002-00770 and Bancaixa-Universitat Jaume I, P1-1A2002-110.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Cosín, J. Monterde, Bézier surfaces of minimal area, Proceedings of the Int. Conf. of Computational Science, ICCS’2002, Amsterdam, eds. Sloot, Kenneth Tan, Dongarra, Hoekstra, LNCS 2330, vol II, pages 72–81, Springer-Verlag, (2002).

    Google Scholar 

  2. G. Farin, D. Hansford, Discrete Coons patches, CAGD 16, 691–700 (1999).

    Google Scholar 

  3. J. Gallier, Curves and surfaces in Geometric Modeling, Morgan Kaufmann publishers, S.Francisco, California, (2000).

    Google Scholar 

  4. J. Hoscheck and D. Lasser, Fundamentals of Computer Aided Geometric Design, A.K.Peters, Wellesley, (1993).

    Google Scholar 

  5. J. Monterde, B’ezier surfaces of minimal area: The Dirichlet approach, preprint.

    Google Scholar 

  6. R. Veltkamp, W. Wesselink, Variational Modeling of triangular B’ezier Surfaces, pr.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arnal, A., Lluch, A., Monterde, J. (2003). Triangular Bézier Surfaces of Minimal Area. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-44842-X_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40156-8

  • Online ISBN: 978-3-540-44842-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics