Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visualizing Large Relational Datasets by Combining Grand Tour with Footprint Splatting of High Dimensional Data Cubes

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2667))

Included in the following conference series:

  • 819 Accesses

Abstract

Large relational datasets have always been a challenge for information visualization due to their high dimensionalities and their large sizes. One approach to this challenge is to combine grand tour and volume rendering with the support of data aggregation from databases to deal with both high dimensionality of data and large number of relational records. This paper focuses on how to efficiently produce explanatory images that give comprehensive insights into the global data distribution features, such as data clusters and holes, in large relation datasets. Multidimensional footprint splatting is implemented to directly render relational data. Footprint splatting is implemented by using texture mapping accelerated by graphics hardware. Experiments have shown the usefulness of the approach to display data clusters and to identify interesting patterns in high dimensional relational datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asimov, D.: The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM J. Science and Statistical Computing, 6 (1985) 128–143

    Article  MATH  MathSciNet  Google Scholar 

  2. Bajaj, C., Pascucci, V., Ribbiolo, G., Schikore, D.: Hypervolume Visualization: A Challenge in Simplicity. In Proc. IEEE/ACM 1998 Symp. Volume Visualization. Research Triangle Park, NC (1998) 95–102

    Chapter  Google Scholar 

  3. Bay, S.D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California, Department of Information and Computer Science (1999)

    Google Scholar 

  4. Becker, B.G.: Volume Rendering for Relational Data. In IEEE Symp. Information Visualization(InfoVis’97), Phoenix, Arizona (1997)

    Google Scholar 

  5. Cook, D., Buja, A., Cabrera, J.: Grand Tour And Projection Pursuit. J. Computational and Graphical Statistics, 4 (1995) 155–172

    Article  Google Scholar 

  6. Dhillon, I.S., Modha, D.S., Spangler, W.S.: Visualizing Class Structure of High Dimensional Data. In Proc. 30th Symp. Interface: Computer Science and Statistics (1998)

    Google Scholar 

  7. Hurley, C., Buja, A.: Analyzing High-Dimensional Data With Motion Graphics. SIAM J. Scientific and Statistical Computing, 11 (1990) 1193–1211

    Article  MATH  Google Scholar 

  8. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ (1988)

    MATH  Google Scholar 

  9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys, 31 (1999) 264–323

    Article  Google Scholar 

  10. Melli, G.: Dataset generator (datgen). http://www.datasetgenerator.com/

  11. Swayne, D.F., Cook, D., Buja, A.: XGobi: Interactive Dynamic Data Visualization in the X Window System. J. Computational and Graphical Statistics, 7(1998) 113–130

    Article  Google Scholar 

  12. Ward, M.: High Dimensional Brushing for Interactive Exploration of Multivariate Data. In Proc. Visualization’95 (1995) 271–278

    Google Scholar 

  13. Westover, L.: Footprint Evaluation For Volume Rendering. ACM Computer Graphics, 24 (1990) 367–376

    Article  Google Scholar 

  14. Yang, L.: Interactive Exploration of Very Large Relational Datasets through 3D Dynamic Projections. In Proc. 6th ACM Conference on Knowledge Discovery and Data Mining (KDD 00), Boston, MA (2000) 236–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, L. (2003). Visualizing Large Relational Datasets by Combining Grand Tour with Footprint Splatting of High Dimensional Data Cubes. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44839-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44839-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40155-1

  • Online ISBN: 978-3-540-44839-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics