Nothing Special   »   [go: up one dir, main page]

Skip to main content

Time-Space Efficient Exponentiation over GF(2m)

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2667))

Included in the following conference series:

  • 661 Accesses

Abstract

The modular exponentiation on the finite field is the basic operation in most public key crypto systems. In this paper, we propose a multiplier/squarer which simultaneously processes the modular multiplication and squaring over GF(2m) based on cellular automata. For effective exponentiation on GF(2m), we use a proposed multiplier/squarer. Since the cellular automata architecture is simple, regular, modular and cascadable, it can be utilized efficiently for the implementation of VLSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. McEliece, Finite Fields for Computer Scientists and Engineerings, New York: Kluwer Academic, 1987

    Google Scholar 

  2. W. Diffie and M.E. Hellman, “New directions in cryptography”, IEEE Trans. on Info. Theory, VOL. 22, pp.644–654, Nov. 1976.

    Google Scholar 

  3. T. ElGamal. “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. on Info. Theory, VOL. 31(4). pp. 469–472, July 1985.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.

    Google Scholar 

  5. C.-S. YEH, IRVING S. REED, T.K. TRUONG, “Systolic Multipliers for Finite Fields GF(2m)”, IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 4, pp. 357–360, April 1984.

    Article  MathSciNet  Google Scholar 

  6. C.L. Wang, J.L. Lin, “Systolic Array Implementation of Multipliers for Finite Fields GF(2m)”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 38, NO. 7, pp. 796–800,July 1991.

    Article  Google Scholar 

  7. P.L. Montgomery, “Modular multiplication without trial division”, Mathematics of Computation, 44(170):519–521, April, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Delorme, J. Mazoyer, Cellular Automata, KLUWER ACADEMIC PUBLISHERS 1999.

    Google Scholar 

  9. STEPHEN WOLFRAM, Cellular Automata and Complexity, Addison-Wesly Publishing Company, 1994.

    Google Scholar 

  10. ELWYN R. BERLEKAMP, “Bit-Serial Reed-Solomon Encoders”, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-28, NO. 6, pp. 869–874, November, 1982.

    Article  Google Scholar 

  11. P.P. Choudhury, R. Barua, “Cellular Automata Based VLSI Architecture for Computing Multiplication And Inverse In GF(2m)”, IEEE Proceeding of the 7th International Conference on VLSI Design, pp.279–282, January 1994.

    Google Scholar 

  12. Knuth, THE ART OF COMPUTER PROGRAMMING, VOL. 2/Seminumerical Algorithms, ADDISON-WESLEY, 1969.

    Google Scholar 

  13. P.A. Scott, S.J. Simmons, S.E. Tavares, and L.E. Peppard, “Architectures for Exponentiation in GF(2m)”, IEEE J. Selected Areas in Comm., VOL.6., NO. 3, pp. 578–586, April, 1988.

    Article  Google Scholar 

  14. C. Parr, “Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents”. IEEE TRANSACTIONS ON COMPUTERS, VOL.48, NO. 10, pp. 1025–1034, October, 1999.

    Article  Google Scholar 

  15. Kyo-Min Ku, Kyeoung-Ju Ha, Hyun-Sung Kim, Kee-Young Yoo, “New Parallel Architecture for Modular Multiplication and Squaring Based on Cellular Automata”., PARA 2002, LNCS 2367, pp.359–369, 2002

    Google Scholar 

  16. C.L. Wang, “Bit-Level Systolic Array for Fast Exponentiation in Gf(2m)”, IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 7, pp. 838–841, July, 1994.

    Article  MATH  Google Scholar 

  17. D. D. Gajski, Principles of Digital Design, Prentice-Hall International, Inc., 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ku, KM., Ha, KJ., Yoo, KY. (2003). Time-Space Efficient Exponentiation over GF(2m). In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44839-X_92

Download citation

  • DOI: https://doi.org/10.1007/3-540-44839-X_92

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40155-1

  • Online ISBN: 978-3-540-44839-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics