Nothing Special   »   [go: up one dir, main page]

Skip to main content

Document Classification and Interpretation through the Inference of Logic-Based Models

  • Conference paper
  • First Online:
Research and Advanced Technology for Digital Libraries (ECDL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2163))

Included in the following conference series:

Abstract

We present a methodology for document processing that exploits logic-based machine learning techniques. Our claim is that information capture and indexing can profit by the identification of the document class and of specific function of its single layout components. Indeed, the application of incremental and multistrategy machine learning techniques, rather than the classic ones, allows for an efficient solution to the problem of information capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. Altamura, F. Esposito, and D. Malerba. Transforming paper documents into XML format with WISDOM++. International Journal on Document Analysis and Recognition, 2001. To appear.

    Google Scholar 

  2. H. Brocks, U. Thiel, A. Stein, and A. Dirsch-Weigand. Customizable retrieval functions based on user tasks in the cultural heritage domain. In this book.

    Google Scholar 

  3. F. Esposito, D. Malerba, and F.A. Lisi. Machine learning for intelligent processing of printed documents. Journal of Intelligent Information Systems, 14(2/3):175–198, 2000.

    Article  Google Scholar 

  4. F. Esposito, D. Malerba, G. Semeraro, N. Fanizzi, and S. Ferilli. Adding machine learning and knowledge intensive techniques to a digital library service. International Journal of Digital Libraries, 2(1): 3–19, 1998.

    Article  Google Scholar 

  5. F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Revision: Induction and abduction in INTHELEX. Machine Learning, 38(1/2):133–156, 2000.

    Article  MATH  Google Scholar 

  6. E.A. Fox. How to make intelligent digital libraries. In Z.W. Raś and M. Zemankova, editors, Proceedings of the 8th International Symposium on Methodologies for Intelligent Systems, volume 869 of LNAI, pages 27–38. Springer, 1994.

    Google Scholar 

  7. X. Li and P. Ng. A document classification and extraction system with learning ability. In Proceedings of the 5th International Conference on Document Analysis and Recognition, pages 197–200, 1999.

    Google Scholar 

  8. G. Nagy. Twenty years of document image analysis in PAMI. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):38–62, 2000.

    Article  Google Scholar 

  9. F. Sebastiani. Machine learning in automated text categorization. Technical Report Technical Report IEI:B4-31-12-99, CNR-IEI, Pisa, Italy, 1999. Rev. 2001.

    Google Scholar 

  10. G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. Machine learning + on-line libraries = IDL. In C. Peters and C. Thanos, editors, Research and Advanced Technology for Digital Libraries. First European Conference-ECDL97, volume 1324 of LNCS, pages 195–214. Springer, 1997.

    Chapter  Google Scholar 

  11. Y. Tang, S. Lee, and C. Suen. Automatic document processing: A survey. Pattern Recognition, 29(2):1931–1952, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semeraro, G., Ferilli, S., Fanizzi, N., Esposito, F. (2001). Document Classification and Interpretation through the Inference of Logic-Based Models. In: Constantopoulos, P., Sølvberg, I.T. (eds) Research and Advanced Technology for Digital Libraries. ECDL 2001. Lecture Notes in Computer Science, vol 2163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44796-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44796-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42537-3

  • Online ISBN: 978-3-540-44796-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics