Abstract
This paper introduces R-SMW, a new algorithm for stereo matching. The main aspect is the introduction of a Markov Random Field (MRF) model in the Symmetric Multiple Windows (SMW) stereo algorithm in order to obtain a non-deterministic relaxation. The SMW algorithm is an adaptive, multiple window scheme using left-right consistency to compute disparity. The MRF approach allows to combine in a single functional the disparity values coming from different windows, the left-right consistency constraint and regularization hypotheses. The optimal estimate of the disparity is obtained by minimizing an energy functional with simulated annealing. Results with both synthetic and real stereo pairs demonstrate the improvement over the original SMW algorithm, which was already proven to perform better than state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G.S Nadabar A.K. Jain. Range image segmentation using MRF models. In A.K. Jain and R. Chellappa, editors, Markov Random Fields Theory and Application, pages 542–572. Academic Press, 1993.
I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. A maximum likelihood stereo algorithm. Computer Vision and Image Understanding, 63(3):542–567, May 1996.
H. Derin and H. Elliot. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):39–54, 1987.
U. R. Dhond and J. K. Aggarwal. Structure from stereo-a review. IEEE Transactions on Systems, Man and Cybernetics, 19(6):1489–1510, November/December 1989.
O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua, E. Théron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real-time correlation-based stereo: algorithm, implementation and applications. Technical Report 2013, Unité de recherche INRIA Sophia-Antipolis, August 1993.
P. Fua. Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1292–1298, Sydney, Australia, August 1991.
A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 858–863, Puerto Rico, June 1997. IEEE Computer Society Press.
A. Fusiello, V. Roberto, and E. Trucco. Symmetric stereo with multiple windowing. International Journal of Pattern Recognition and Artificial Intelligence, 14(8):1053–1066, December 2000.
A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo pairs. Machine Vision and Applications, 12(1):16–22, 2000.
E. Gamble and T. Poggio. Visual integration and detection of discontinuities: the key role of intensity edge. A.I. Memo 970, Massachusetts Institute of Technology, 1987.
D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo. International Journal of Computer Vision, 14(3):211–226, April 1995.
S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984.
S.S. Intille and A. F. Bobick. Disparity-space images and large occlusion stereo. In Jan-Olof Eklundh, editor, European Conference on Computer Vision, pages 179–186, Stockholm, Sweden, May 1994. Springer-Verlag.
J. Konrad and E. Dubois. Bayesian estimation of motion vector field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9):910–927, September 1992.
T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):920–932, September 1994.
A. Das K.P. Lim, M.N. Chong. A new MRF model for robust estimate of occlusion and motion vector fields. In International Conference on Image Processing, 1997.
K.G. Lim and R. Prager. Using Markov random field to integrate stereo modules. Technical report, Cambridge University Endineering Department, 1992. Available from http://svr-www.eng.cam.ac.uk/reports.
J. K. Marroquine. Probabilistic Solution of Inverse Problem. PhD thesis, Massachusetts Institute of Technology, 1985.
V. Murino, A. Trucco, and C.S. Regazzoni. A probabilistic approach to the coupled reconstruction and restoration of underwater acoustic images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):9–22, January 1998.
C.D. Gellat Jr S. Kirkpatrik and M.P. Vecchi. Optimization by simulated annealing. Science, 220(4):671–680, 1983.
S.T. Barnard. Stereo matching. In A.K. Jain and R. Chellappa, editors, Markov Random Fields Theory and Application, pages 245–271. Academic Press, 1993.
W. Woo and A. Ortega. Stereo image compression with disparity compensation using the MRF model. In Proceedings of Visual Communications and Image Processing (VCIP’96), 1996.
R. Zabih and J. Woodfill. Non-parametric local transform for computing visual correspondence. In Proceedings of the European Conference on Computer Vision, pages 151–158, Stockholm, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fusiello, A., Castellani, U., Murino, V. (2001). Relaxing Symmetric Multiple Windows Stereo Using Markov Random Fields. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_7
Download citation
DOI: https://doi.org/10.1007/3-540-44745-8_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42523-6
Online ISBN: 978-3-540-44745-0
eBook Packages: Springer Book Archive