Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Finite Automaton Constructions Based on Canonical Derivatives

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2088))

Included in the following conference series:

Abstract

Two classical constructions to convert a regular expression into a finite non-deterministic automaton provide complementary advantages: the notion of position of a symbol in an expression, introduced by Glushkov and McNaugthon-Yamada, leads to an efficient computation of the position automaton (there exist quadratic space and time implementations w.r.t. the size of the expression), whereas the notion of derivative of an expression w.r.t. a word, due to Brzozowski, and generalized by Antimirov, yields a small automaton. The number of states of this automaton, called the equation automaton, is less than or equal to the number of states of the position automaton, and in practice it is generally much smaller. So far, algorithms to build the equation automaton, such as Mirkin’s or Antimirov’s ones, have a high space and time complexity. The aim of this paper is to present new theoretical results allowing to compute the equation automaton in quadratic space and time, improving by a cubic factor Antimirov’s construction. These results lay on the computation of a new kind of derivative, called canonical derivative, which makes it possible to connect the notion of continuation in a linear expression due to Berry and Sethi, and the notion of partial derivative of a regular expression due to Antimirov. A main interest of the notion of canonical derivative is that it leads to an efficient computation of the equation automaton via a specific reduction of the position automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-Wesley, Reading, MA, 1983.

    MATH  Google Scholar 

  2. V. Antimirov. Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci., 155:291–319, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Beauquier, J. Berstel, and P. Chrétienne. Éléments d’Algorithmique. Masson, Paris, 1992.

    Google Scholar 

  4. A. Brüggemann-Klein, Regular Expressions into Finite Automata. Theoret. Comput. Sci., 120 (1993), 197–213.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Berry and R. Sethi. From regular expressions to deterministic automata. Theoret. Comput. Sci., 48(1):117–126, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comput. Mach., 11(4):481–494, 1964.

    MATH  MathSciNet  Google Scholar 

  7. J.-M. Champarnaud and D. Ziadi, From C-Continuations to New Quadratic Algorithms for Automaton Synthesis. Intern. Journ. of Alg. Comp., to appear.

    Google Scholar 

  8. C.-H. Chang and R. Paige. From Regular Expressions to DFAs using Compressed NFAs, in Apostolico. Crochemore. Galil. and Manber. editors. Lecture Notes in Computer Science, 644(1992), 88–108.

    Google Scholar 

  9. V.M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1–53, 1961.

    Article  Google Scholar 

  10. Ch. Hagenah and A. Muscholl, Computing ε-free NFA from Regular Expressions in O(nlog2(n)) Time, in: L. Prim et al. (eds.), MFCSé98, Lecture Notes in Computer Science, 1450 (1998), 277–285, Springer.

    Google Scholar 

  11. J. Hromkovič, S. Seibert and T. Wilke, Translating regular expressions into small ε-free nondeterministic finite automata, in: R. Reischuk (ed.), STACS’97, Lecture Notes in Computer Science, 1200 (1997), 55–66, Springer.

    Chapter  Google Scholar 

  12. R.F. McNaughton and H. Yamada. Regular expressions and state graphs for automata. IEEE Transactions on Electronic Computers, 9:39–57, 1960.

    Article  Google Scholar 

  13. B.G. Mirkin. An algorithm for constructing a base in a language of regular expressions. Engineering Cybernetics, 5:110–116, 1966.

    Google Scholar 

  14. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM J. Comput., 16(6), 1987.

    Google Scholar 

  15. J.-L. Ponty, D. Ziadi and J.-M. Champarnaud, A new Quadratic Algorithm to convert a Regular Expression into an Automaton, In: D. Raymond and D. Wood, eds., Lecture Notes in Computer Science, 1260 (1997) 109–119.

    Google Scholar 

  16. K. Thompson. Regular expression search algorithm. Comm. ACM, 11(6):419–422, 1968.

    Article  MATH  Google Scholar 

  17. B.W. Watson. Taxonomies and Toolkit of Regular Languages Algorithms. PhD thesis, Faculty of mathematics and computing science, Eindhoven University of Technology, The Netherlands, 1995.

    Google Scholar 

  18. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, vol. I, 41–110. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  19. D. Ziadi, J.-L. Ponty, and J.-M. Champarnaud. Passage d’une expression rationnelle à un automate fini non-déterministe. Journées Montoises (1995), Bull. Belg. Math. Soc., 4:177–203, 1997.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Champarnaud, JM., Ziadi, D. (2001). New Finite Automaton Constructions Based on Canonical Derivatives. In: Yu, S., Păun, A. (eds) Implementation and Application of Automata. CIAA 2000. Lecture Notes in Computer Science, vol 2088. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44674-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-44674-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42491-8

  • Online ISBN: 978-3-540-44674-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics