Abstract
We present a neural network clustering approach to the analysis of dynamic contrast-enhanced magnetic resonance imaging (MRI) mammography time-series. In contrast to conventional extraction of a few voxel-based perfusion parameters, neural network clustering does not discard information contained in the complete signal dynamics time-series data. We performed exploratory data analysis in patients with breast lesions classified as indeterminate from clinical findings and conventional X-ray mammography. Minimal free energy vector quantization provided a self-organized segmentation of voxels w.r.t. fine-grained differences of signal amplitude and dynamics, thus identifying the lesions from surrounding tissue and enabling a subclassification within the lesions with regard to regions characterized by different MRI signal time-courses. We conclude that neural network clustering can provide a useful extension to the conventional visual inspection of interactively defined regions-of-interest. Thus, it can contribute to the diagnosis of indeterminate breast lesions by non-invasive imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D.R. Dersch. Eigenschaften neuronaler Vektorquantisierer und ihre Anwendung in der Sprachverarbeitung. Verlag Harri Deutsch, Reihe Physik, Bd. 54, Thun, Frankfurt am Main, 1996. ISBN 3-8171-1492-3.
D.R. Dersch and P. Tavan. Load balanced vector quantization. In Proceedings of the International Conference on Artificial Neural Networks ICANN, pages 1067–1070. Springer, 1994.
C.K. Kuhl, P. Mielcareck, S. Klaschik, C. Leutner, E. Wardelmann, J. Gieseke, and H.H. Schild. Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology, 211:101–110, 1999.
G.L. Leinsinger, M. Scherr, A. Wismüller, O. Lange, D.R. Dersch, and K. Hahn. Unsupervised cluster analysis of dynamic contrast-enhanced MR mammography by neural networks-characterization of benign and malignant breast lesions. In preparation, 2000.
K. Rose, E. Gurewitz, and G.C. Fox. Vector quantization by deterministic annealing. IEEE Transactions on Information Theory, 38(4): 1249–1257, 1992.
A. Wismüller, D.R. Dersch, B. Lipinski, K. Hahn, and D. Auer. Hierarchical clustering of fMRI time-series by deterministic annealing. Neuroimage, 7(4):593, 1998.
A. Wismüller, G.L. Leinsinger, D.R. Dersch, O. Lange, M. Scherr, and K. Hahn. Neural network image processing in contrast-enhanced MRI mammography-unsupervised cluster analysis of signal dynamics time-series by deterministic annealing. Radiology Suppl., 217(P):208–209, 2000.
A. Wismüller, F. Vietze, and D.R. Dersch. Segmentation with neural networks. In Isaac Bankman, Raj Rangayyan, Alan Evans, Roger Woods, Elliot Fishman, and Henry Huang, editors, Handbook of Medical Imaging, Johns Hopkins University, Baltimore, 2000. Academic Press. ISBN 0120777908.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wismüller, A., Lange, O., Dersch, D.R., Hahn, K., Leinsinger, G.L. (2001). Neural Network Analysis of Dynamic Contrast-Enhanced MRI Mammography. In: Dorffner, G., Bischof, H., Hornik, K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44668-0_138
Download citation
DOI: https://doi.org/10.1007/3-540-44668-0_138
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42486-4
Online ISBN: 978-3-540-44668-2
eBook Packages: Springer Book Archive