Nothing Special   »   [go: up one dir, main page]

Skip to main content

Time and Message Optimal Leader Election in Asynchronous Oriented Complete Networks

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2000 (MFCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1893))

  • 519 Accesses

Abstract

We consider the problem of leader election in asynchronous oriented N-node complete networks. We present a leader election algorithm with O(N) message and O(log logN) time complexity. The message complexity is optimal and the time complexity is the best possible under the assumption of message optimality.

The best previous leader election algorithm for asynchronous oriented complete networks by Singh [16] achieves O(N) message and O(logN) time complexity.

Supported by VEGA grant No. 2/7007/20

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Awerbuch, B.: Optimal distributed algorithms for minimal weight spanning tree, counting, leader election and related problems. In Proc. ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 230–240.

    Google Scholar 

  2. Burns, J.E.: A formal model for message passing systems. Technical Report TR-91, Computer Science Department, Indiana University, Bloominggton, Sept. 1980.

    Google Scholar 

  3. Dobrev, S.-Ružička, P.: Linear broadcasting and N log log N election in unoriented hypercubes. In Proc. of SIROCCO’97, Carleton Press, Ascona, Switzerland, 1997, pp. 52–68.

    Google Scholar 

  4. Dobrev, S.-Ružička, P.: Yet Another Modular Technique for Efficient Leader Election. Proc. of SOFSEM’98, LNCS 1521, Springer-Verlag, 1998, pp. 312–321.

    Google Scholar 

  5. Dobrev, S.: Time and Message Optimal Election in Oriented Hypercubes. Submitted to SWAT’2000.

    Google Scholar 

  6. Flocchini, P.-Mans, B.: Optimal Elections in Labeled Hypercubes. Journal of Parallel and Distributed Computing33(1), 1996, pp. 76–83.

    Article  Google Scholar 

  7. Flocchini, P.-Mans, B.-Santoro, N.: Sense of direction:definition, properties and classes. Networks 32(3) 1998, pp. 165–180.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gallager, R. G.-Humblet, P.A.-Spira, P. M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Programming Languages and Systems 5, 1983, pp. 66–77.

    Google Scholar 

  9. Hirschberg, D.S.-Sinclair, J.B.: Decentralized extrema-finding in circular configurations of processes. Communication of the ACM23(11) 1980, pp. 627–628.

    Article  MATH  MathSciNet  Google Scholar 

  10. Israeli, A.-Kranakis, E.-Krizanc, D.-Santoro, N.: Time-message Trade-offs for the Weak Unison Problem, Nordic Journal of Computing 4(1997), pp. 317–329.

    MATH  MathSciNet  Google Scholar 

  11. Korach, E.-Moran, S.-Zaks, S.: Optimal Lower Bounds for Some Distributed Algorithms for a Complete Network of Processors TCS 64(1), 1989, pp. 125–132.

    MATH  MathSciNet  Google Scholar 

  12. Loui, M.C.-Matsushita, T.A.-West, D.B.: Election in complete networks with a sense of direction. Inf. Proc. Lett.22, 1986, pp. 185–187. Addendum: Inf. Proc. Lett. 28, 1988, p. 327.

    Article  MathSciNet  Google Scholar 

  13. Mans, B.: Optimal Distributed Algorithms in Unlabelled Tori and Chordal Rings. Journal of Parallel and Distributed Computing46(1), 1997, pp. 80–90.

    Article  MATH  MathSciNet  Google Scholar 

  14. Peterson, G.L.: Efficient algorithms for elections in meshes and complete neworks. Technical Report TR140 Dept. of Computer Science, Univ. of Rochester, Rochester, NY 14627, 1985.

    Google Scholar 

  15. Singh, G.: Leader Election in Complete Networks. SIAM J. COMPUT., 26(3), 1997, pp. 772–785. Preliminary version containing the proof of the lower bound appeared in Proc. of 11th Symposium on Principles of Distributed Computing, 1992

    Article  MATH  MathSciNet  Google Scholar 

  16. Singh, G: Leader Election Using Sense of Direction. Distributed Computing, 10(3), 1997, pp. 159–165.

    Article  Google Scholar 

  17. Santoro, N.-Widmayer, P.: Distributed function evaluation in presence of transmission faults, in Proc. of SIGAL’90, Tokyo, 1990; LNCS 450, Springer Verlag, 1990, pp. 358–369.

    Google Scholar 

  18. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  19. Tel, G.: Linear Election in Oriented Hypercubes. Parallel Processing Letters 5, 1995, pp. 357–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrev, S. (2000). Time and Message Optimal Leader Election in Asynchronous Oriented Complete Networks. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-44612-5_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67901-1

  • Online ISBN: 978-3-540-44612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics