Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bridging Deliberation and Reactivity in Cooperative Multi-Robot Systems through Map Focus

  • Conference paper
  • First Online:
Balancing Reactivity and Social Deliberation in Multi-Agent Systems (BRSDMAS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2103))

Abstract

This paper is on balancing reactivity and deliberation in coo- perative multi-robot systems. We outline which are the challenging issues that has to be addressed to get an effective solution. Then, a balancing method, based on introducing a concept of “Map Focus”, is proposed. The framework is also enhanced with “Cooperative Behaviors”, useful for robotic cooperation for accomplishing tasks in dynamic environments. We provide the details of the implementation and of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Arai and J. Ota. Let-us work together — task planning of multiple mobile robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 298–303, 1995.

    Google Scholar 

  2. R. Arkin. Path planning for a vision-based autonomous robot. In Proceedings of the SPIE Conference on Mobile Robots, pages 240–249, 1986.

    Google Scholar 

  3. R. Arkin. Integrating behavioural, perceptual, and world knowledge in reactive navigation. Robotics and Autonomous Systems, 6:105–122, 1990.

    Article  Google Scholar 

  4. H. Asama, K. Ozaki, A. Matsumoto, Y. Ishida, and I. Endo. Development od task assignment system using communication for multiple autonomous robots. Journal of Robotics and Mechatronics, 4:122–127, 1992.

    Google Scholar 

  5. M.S. Atkin, D.L. Westbrook, and P.R. Cohen. HAC: A unified view of reactive and deliberative activity. In M. Hannebauer, J. Wendler, and E. Pagello, editors, Balancing Reactivity and Social Deliberation in Multi-agent Systems (this volume), pages 92–107. Springer, 2001.

    Google Scholar 

  6. T. Balch and R.C. Arkin. Communication in reactive multiagent robotic systems. Autonomous Robots, 1(1):27–52, 1994.

    Article  Google Scholar 

  7. T. Basar and G.J. Olsder. Dynamic Noncooperative Game Theory. SIAM, 1999.

    Google Scholar 

  8. G. Beni and J. Wang. On cyclic cellular robotic systems. In Japan-USA Symposium on Flexible Automation, pages 1077–1083, 1990.

    Google Scholar 

  9. S.C. Botelho and R. Alami. Cooperative plan enhancement in multi-robot context. In E. Pagello et al., editor, Intelligent Autonomous Systems 6. IOS Press, 2000.

    Google Scholar 

  10. S.C. Botelho and R. Alami. A multi-robot cooperative achievement system. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 2716–2721, 2000.

    Google Scholar 

  11. V. Braitenberg. Veichles: Experiments in Synthetic Psychology. MIT Press, 1984.

    Google Scholar 

  12. R.A. Brooks. A robust layered control systems for mobile robot. IEEE Journal of Robotics and Automation, RA-2(1):14–23, 1986.

    Google Scholar 

  13. R.A. Brooks. Intelligence without reason. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 569–595, 1991.

    Google Scholar 

  14. U. Cao, A.S. Fukunaga, and A.B. Kahng. Cooperative mobile robots: Antecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

    Article  Google Scholar 

  15. S. Carpin, C. Ferrari, and E. Pagello. A framework for distributed simulation of multirobot systems: the vlab experience. In L.E. Parker, G. Bekey, and J. Barhen, editors, Distributed Autonomous Robotic Systems 4, pages 45–54. Springer, 2000.

    Google Scholar 

  16. G. Dudek, M.R.M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent robotics. Autonomous Robots, 3(4):375–397, 1996.

    Article  Google Scholar 

  17. R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

    Article  MATH  Google Scholar 

  18. T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Self organaizing robots based on cell structures — cebot. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, pages 145–150, 1988.

    Google Scholar 

  19. M. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of the Sixth National Conference on Artificial Intelligence, pages 677–682, 1987.

    Google Scholar 

  20. L. Iocchi, D. Nardi, and M. Salerno. Reactivity and deliberation: a survey on multirobot systems. In M. Hannebauer, J. Wendler, and E. Pagello, editors, Balancing Reactivity and Social Deliberation in Multi-agent Systems (this volume), pages 9–32. Springer, 2001.

    Google Scholar 

  21. K. Kostiadis and H. Hu. A multi-threaded approach to simulated soccer agents for the robocup competitions. In M. Veloso, E. Pagello, and H. Kitano, editors, Robocup-99: Robot Soccer Word Cup III, pages 366–377. Springer, 2000.

    Google Scholar 

  22. S.M. LaValle. Robot motion planning: A game-theoretic approach. Algorithmica, 26:430–465, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.M. LaValle and S.A. Hutchinson. Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14(6), 1998.

    Google Scholar 

  24. M.J. Mataric. Minimizing complexity in controlling a mobile robot population. In Proceedings of the IEEE International Conference on Robotics and Autonomation, pages 830–835, 1992.

    Google Scholar 

  25. M.J. Mataric. Reinforcement learning in the multi-robot domain. Autonomous Robots, 4(1), 1997.

    Google Scholar 

  26. E. Pagello, A. D’Angelo, F. Montesello, F. Garelli, and C. Ferrari. Cooperative behaviors in multi-robot systems through implicit communication. Robotics and Autonomous Systems, 29(1):65–77, 1999.

    Article  Google Scholar 

  27. L. Parker. Heterogeneous Multi-Robot Cooperation. PhD thesis, Massachusetts Institute of Technology, January 1994.

    Google Scholar 

  28. L.E. Parker. Current state of the art in distributed autonomous mobile robots. In L.E. Parker, G. Bekey, and J. Barhen, editors, Distributed Autonomous Robotic Systems 4, pages 3–12. Springer, 2000.

    Google Scholar 

  29. R. Pfeifer. Building fungus eaters: Design principles of autonomous agents. In Simulation of Adaptive Behavior, pages 3–12, 1996.

    Google Scholar 

  30. W. Reisig. Elements of Distributed Algorithms. Springer, 1998.

    Google Scholar 

  31. E. Sacerdoti. A structure for plans and behavior. American Elsevier, 1977.

    Google Scholar 

  32. L. Steels. Exploiting analogical representation. In P. Maes, editor, Designing Autonomous Agents, pages 71–88. MIT Press, 1990.

    Google Scholar 

  33. P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning perspective. Autonomous Robots, 8(3):345–383, 2000.

    Article  Google Scholar 

  34. E. Todt, G. Raush, and R. Suàarez. Analysis and classification of multiple robot coordination methods. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 3158–3163, 2000.

    Google Scholar 

  35. G. Weiss. Cognition, sociability, and constrains. In M. Hannebauer, J. Wendler, and E. Pagello, editors, Balancing Reactivity and Social Deliberation in Multi-agent Systems (this volume), pages 217–235. Springer, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carpin, S., Ferrari, C., Pagello, E., Patuelli, P. (2001). Bridging Deliberation and Reactivity in Cooperative Multi-Robot Systems through Map Focus. In: Balancing Reactivity and Social Deliberation in Multi-Agent Systems. BRSDMAS 2000. Lecture Notes in Computer Science(), vol 2103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44568-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44568-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42327-0

  • Online ISBN: 978-3-540-44568-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics