Abstract
Speaker-independent speech recognition systems are being used with increasing frequency for command and control applications. To date, users of such systems must contend with their fragility to subtle changes in language usage and environmental acoustics. We describe work on coupling speech recognition systems with temporal probabilistic user models that provide inferences about the intentions associated with utterances. The methods can be employed to enhance the robustness of speech recognition by endowing systems with an ability to reason about the costs and benefits of action in a setting and to make decisions about the best action to take given uncertainty about the meaning behind acoustic signals. The methods have been implemented in the form of a dialog clarification module that can be integrated with legacy spoken language systems. We describe representation and inference procedures and present details on the operation of an implemented spoken command and control development environment called DeepListener.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D.W. Albrecht, I. Zukerman, A.E. Nicholson, and A. Bud. Towards a bayesian model for keyhole plan recognition in large domains. In Proceedings of the Sixth International Conference on User Modeling, Sardinia, Italy, pages 365–376. User Modeling, Springer-Verlag, June 1997.
C. Conati, A.S. Gertner, K. VanLehn, and M.J. Druzdzel. Online student modeling for coached problem solving using bayesian networks. In Proceedings of the Sixth International Conference on UserModeling, Sardinia, Italy, pages 231–242. User Modeling, Springer-Verlag, June 1997.
P. Dagum, A. Galper, and E. Horvitz. Dynamic network models for forecasting. In Proceedings of the Eighth Workshop on Uncertainty in Artificial Intelligence, pages 41–48, Stanford, CA, July 1992. Association for Uncertainty in Artificial Intelligence.
E. Horvitz. Principles of mixed-initiative user interfaces. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI’ 99), pages 159–166. ACM Press, May 1999.
E. Horvitz and M. Barry. Display of information for time-critical decision making. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 296–305, Montreal, Canada, August 1995. Morgan Kaufmann, San Francisco.
E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 256–265. Morgan Kaufmann, San Francisco, July 1998.
A. Jameson. Numerical uncertainty management in user and student modeling: An overview of systems and issues. User Modeling and User-Adapted Interaction, 5:193–251, 1996.
K. Kanazawa and T. Dean. A model for projection and action. In Proceedings of the Eleventh IJCAI. AAAI/International Joint Conferences on Artificial Intelligence, August 1989.
K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithm for dynamic probabilistic networks. In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 346–351, Montreal, Quebec, Canada, 1995.
A.E. Nicholson and J.M. Brady. Dynamic belief networks for discrete monitoring. IEEE Transactions on Systems, Man, and Cybernetics, 24(11):1593–1610, 1994.
T. Paek and E. Horvitz. Conversation as action under uncertainty. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 445–464. AUAI, Morgan Kaufmann, August 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Horvitz, E., Paek, T. (2001). Harnessing Models of Users’ Goals to Mediate Clarification Dialog in Spoken Language Systems. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds) User Modeling 2001. UM 2001. Lecture Notes in Computer Science(), vol 2109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44566-8_1
Download citation
DOI: https://doi.org/10.1007/3-540-44566-8_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42325-6
Online ISBN: 978-3-540-44566-1
eBook Packages: Springer Book Archive