Nothing Special   »   [go: up one dir, main page]

Skip to main content

Local Subspace Classifier in Reproducing Kernel Hilbert Space

  • Conference paper
  • First Online:
Advances in Multimodal Interfaces — ICMI 2000 (ICMI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1948))

Included in the following conference series:

Abstract

Local Subspace Classifier(LSC) is a new classification technique, which is closely related to the subspace classification methods, and a heir of prototype classification methods. And it is superior to both of them. In this paper, a method of improving the performance of Local Subspace Classifier is presented. It is to avoid the intersection of the local subspaces representing the respective categories by mapping the original feature space into RKHS(Reproducing Kernel Hilbert Space).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jorma Laaksonen: Local Subspace Classifier. Proceedings of ICANN’s 97. Lausanne, Switzerland (October, 1997),637–642

    Google Scholar 

  2. Oja, E: Subspace Method of Pattern Recognition. Research Studies Press

    Google Scholar 

  3. R. O. Duda, P. E. Hart: Pattern Classification and Scene Analysis. New York: Wiley(1972)

    Google Scholar 

  4. K. Fikunaga: Introduction to Statistic Pattern Recognition. New York: Academic(1972)

    Google Scholar 

  5. Koji Tsuda: Subspace classifier in the Hilbert Space. Pattern Recognition Letters, Vol. 20(1999), 513–519

    Article  Google Scholar 

  6. Sam-Kit Sin, Rui.J. P. deFigueiredo: An Evolution-Oriented Learning Algorithm for the Optimal Interpolative Net. IEEE Transactions on Neural Networks, Vol. 3(March,1992), 315–323

    Google Scholar 

  7. Sam-Kit Sin, Rui. J. P. deFigueiredo: Efficient Learning Procedures for Optimal Interpolative Net. Neural Networks, Vol. 6(1993), 99–113

    Google Scholar 

  8. Dongfang Zou: Research of OI-Net and RLS-OI Algorithm. Research Report of Institute of Automation(1999), CAS

    Google Scholar 

  9. Haykin, S.: Neural Networks: A comprehensive Foundation. IEEE Computer Society Press, Silver Spring MD(1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, D. (2000). Local Subspace Classifier in Reproducing Kernel Hilbert Space. In: Tan, T., Shi, Y., Gao, W. (eds) Advances in Multimodal Interfaces — ICMI 2000. ICMI 2000. Lecture Notes in Computer Science, vol 1948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40063-X_57

Download citation

  • DOI: https://doi.org/10.1007/3-540-40063-X_57

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41180-2

  • Online ISBN: 978-3-540-40063-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics