Abstract
Local Subspace Classifier(LSC) is a new classification technique, which is closely related to the subspace classification methods, and a heir of prototype classification methods. And it is superior to both of them. In this paper, a method of improving the performance of Local Subspace Classifier is presented. It is to avoid the intersection of the local subspaces representing the respective categories by mapping the original feature space into RKHS(Reproducing Kernel Hilbert Space).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Jorma Laaksonen: Local Subspace Classifier. Proceedings of ICANN’s 97. Lausanne, Switzerland (October, 1997),637–642
Oja, E: Subspace Method of Pattern Recognition. Research Studies Press
R. O. Duda, P. E. Hart: Pattern Classification and Scene Analysis. New York: Wiley(1972)
K. Fikunaga: Introduction to Statistic Pattern Recognition. New York: Academic(1972)
Koji Tsuda: Subspace classifier in the Hilbert Space. Pattern Recognition Letters, Vol. 20(1999), 513–519
Sam-Kit Sin, Rui.J. P. deFigueiredo: An Evolution-Oriented Learning Algorithm for the Optimal Interpolative Net. IEEE Transactions on Neural Networks, Vol. 3(March,1992), 315–323
Sam-Kit Sin, Rui. J. P. deFigueiredo: Efficient Learning Procedures for Optimal Interpolative Net. Neural Networks, Vol. 6(1993), 99–113
Dongfang Zou: Research of OI-Net and RLS-OI Algorithm. Research Report of Institute of Automation(1999), CAS
Haykin, S.: Neural Networks: A comprehensive Foundation. IEEE Computer Society Press, Silver Spring MD(1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zou, D. (2000). Local Subspace Classifier in Reproducing Kernel Hilbert Space. In: Tan, T., Shi, Y., Gao, W. (eds) Advances in Multimodal Interfaces — ICMI 2000. ICMI 2000. Lecture Notes in Computer Science, vol 1948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40063-X_57
Download citation
DOI: https://doi.org/10.1007/3-540-40063-X_57
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41180-2
Online ISBN: 978-3-540-40063-9
eBook Packages: Springer Book Archive